Skip to main content

An Introduction to Formally Real Jordan Algebras and Their Applications in Optimization

  • Chapter
  • First Online:
Handbook on Semidefinite, Conic and Polynomial Optimization

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 166))

  • 5752 Accesses

Abstract

In this chapter we study formally real Jordan algebras and their impact on certain convex optimization problems. We first show how common topics in convex optimization problems, such as complementarity and interior point algorithms, give rise to algebraic questions. Next we study the basic properties of formally real Jordan algebras including properties of their multiplication operator, quadratic representation, spectral properties and Peirce decomposition. Finally we show how this theory transparently unifies presentation and analysis of issues such as degeneracy and complementarity, and proofs of polynomial time convergence of interior point methods in linear, second order and semidefinite optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Jordan algebra invented by Jordan was actually the formally real version.

  2. 2.

    In general algebras are defined over finite or infinite dimensional vector spaces, but in this chapter we are exclusively concerned with finite dimensional ones.

  3. 3.

    We will write Trace (⋅) and Det (⋅) in the usual matrix theoretic sense, and tr (⋅) and det (⋅) for Jordan algebras.

  4. 4.

    Recall that if \mathop{ vec} (X) is the vector obtained from stacking columns of the matrix X, then we have the identity \mathop{ vec} (ZYX ⊤ ) = (X ⊗ Z)\mathop{ vec} (Y ), see for example [21].

  5. 5.

    Pronounced like “purse”.

  6. 6.

    We write SDP as an abbreviation of semidefinite programming over matrices, and scp for symmetric conic programming.

  7. 7.

    In the remainder of this chapter the order of eigenvalues is not essential. Thus, to avoid writing \({\lambda }_{{\pi }_{i}}\) and \({\omega }_{{\pi }_{i}}\), we will simply write λi and ωi.

  8. 8.

    A linear transformation D on \(\mathbb{E}\) is a derivation if \(D(\mathbf{x} \circ \mathbf{y}) ={\bigl ( D(\mathbf{x})\bigr )} \circ \mathbf{y} +{\bigl ( D(\mathbf{y})\bigr )} \circ \mathbf{x}\) for all \(\mathbf{x},\mathbf{y} \in \mathbb{E}\).

References

  1. Alizadeh, F., Goldfarb, D.: Second-Order Cone Programming. Math. Programming Series B 95, 3–51 (2003)

    Google Scholar 

  2. Alizadeh, F., Haeberly, J.P., Overton, M.L.: A new primal-dual interior point method for semidefinite programming. Proc. 5th SIAM Conference on Appl. Linear Algebra, Snowbird, Utah (1994)

    Google Scholar 

  3. Alizadeh, F., Haeberly, J.P., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Programming 77(2) (1997)

    Google Scholar 

  4. Alizadeh, F., Haeberly, J.P., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM J. Optim. 8(3), 746–768 (1998)

    Google Scholar 

  5. Albert, A.: A Note on the Exceptional Jordan Algebra. Proceedings of the National Academy of Sciences of the United States of America 36, 372–374 (1950)

    Google Scholar 

  6. Alizadeh, F.: Combinatorial optimization with interior point methods and semi-definite matrices. Ph.D. thesis, Computer Science Department, University of Minnesota, Minneapolis, Minnesota (1991)

    Google Scholar 

  7. Alizadeh, F.: Optimization Over Positive Semi-Definite Cone; Interior-Point Methods and Combinatorial Applications. In: Pardalos, P. (ed.) Advances in Optimization and Parallel Computing, North-Holland, Amsterdam (1992)

    Google Scholar 

  8. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5(1), 13–51 (1995)

    Google Scholar 

  9. Alizadeh, F., Schmieta, S.H.: Symmetric Cones, Potential Reduction Methods and Word-By-Word Extensions. In: Saigal, R., Vandenberghe, L., Wolkowicz, H. (eds.) Handbook of Semidefinite Programming, Theory, Algorithms and Applications, pp. 195–233. Kluwer Academic Publishers (2000)

    Google Scholar 

  10. Baes, M.: Spectral Functions and Smoothing Techniques on Jordan Algebras. Ph.D. thesis, Université Catholique de Louvain (2006)

    Google Scholar 

  11. Baes, M.: Convexity and Differentiability Properties of Spectral Functions and Spectral Mappings on Euclidean Jordan Algebras. Linear Algebra Appl. 422(2-3), 664–700 (2007)

    Google Scholar 

  12. Ben-Tal, A., Nemirovskiaei, A.S.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2001)

    Google Scholar 

  13. Faybusovich, L.: Euclidean Jordan algebras and interior-point algorithms. Positivity 1(4), 331–357 (1997)

    Google Scholar 

  14. Faybusovich, L.: Linear systems in Jordan algebras and primal-dual interior point algorithms. Journal of Computational and Applied Mathematics 86, 149–175 (1997)

    Google Scholar 

  15. Faybusovich, L.: A Jordan-algebraic approach to potential-reduction algorithms. Mathematische Zeitschrift 239, 117–129 (2002)

    Google Scholar 

  16. Faraut, J., Korányi, A.: Analysis on symmetric cones. Oxford University Press, Oxford, UK (1994)

    Google Scholar 

  17. Gowda, M.S., Sznajder, R.S.: Schur complements, Schur determinenatal and Haynsworth inertia formulas in Euclidean Jordan algebras. Linear Algebra Appl. 432 (2010)

    Google Scholar 

  18. Gowda, M.S., Sznajder, R.S., Tao, L.: Some P-properties for linear transformations on Euclidean Jordan algberas. Linear Algebra Appl. 393, 203–232 (2004)

    Google Scholar 

  19. Güler, O.: Barrier Functions in Interior Point Methods. Math. of Oper. Res. 21, 860–885 (1996)

    Google Scholar 

  20. Güler, O.: Personal communication (1997)

    Google Scholar 

  21. Horn, R., Johnson, C.: Matrix analysis. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  22. Horn, R., Johnson, C.: Topics in matrix analysis. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  23. Hardy, G., Littlewood, J.E., Pólya, G.: Inequalities, 2nd ed., Cambridge University Press (1952)

    Google Scholar 

  24. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)

    Google Scholar 

  25. Jacobson, N.: Structure and Representation of Jordan Algebras. Colloquium Publications, vol. XXXIX, American Mathematical Society, Providence, Rhode Island (1968)

    Google Scholar 

  26. Jacobson, N.: Basic Algebra I. Dover (2009)

    Google Scholar 

  27. Jordan, P., von Neumann, J., Wigner, E.: On algebraic generalization of the quantum mechanical formalism. Ann. of Math. 36, 29–64 (1934)

    Google Scholar 

  28. Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications. Springer-Verlag (1999). Edited by Kreig, A. and Walcher, S. based on Lectures given in The University of Minnesota (1960)

    Google Scholar 

  29. Karlin, S., Studden, W.: Tchebychev Systems: With Applications in Analysis and Statistics. Wiley intersciene Publishers (1966)

    Google Scholar 

  30. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone linear complementarity problem in symmetric matrices. SIAM J. Optim. 7(9), 86–125 (1997)

    Google Scholar 

  31. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Google Scholar 

  32. Monteiro, R.D.C., Adler, I.: Interior path following primal-dual algorithms. Part I: Linear programming. Math. Programming 44, 27–41 (1989)

    Google Scholar 

  33. McCrimmon, K.: A taste of Jordan algebras. Springer-Veralg (2003)

    Google Scholar 

  34. Monteiro, R.D.C.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7, 663–678 (1997)

    Google Scholar 

  35. Monteiro, R.D.C.: Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on Monteiro and Zhang Family of Directions. SIAM J. Optim. 8, 797–812 (1998)

    Google Scholar 

  36. Monteiro, R.D.C., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. Mathematical Programming 88, 61–83 (2000)

    Google Scholar 

  37. Monteiro, R.D.C., Zhang, Y.: A unified analysis for a class of path-following primal-dual interior-point algorithms for semidefinite programming. Mathematical Programming 81, 281–299 (1998)

    Google Scholar 

  38. Nesterov, Y.: Squared functional systems and optimization problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High Performance Optimization. Appl. Optim., pp. 405–440. Kluwer Acad. Publ., Dordrecht (2000)

    Google Scholar 

  39. Nesterov, Y.: Smoothing technique and its application in semidefinite optimization. Math. Programming 103(1), 127–152 (2005)

    Google Scholar 

  40. Nesterov, Y., Nemirovski, A.: Interior Point Polynomial Methods in Convex Programming: Theory and Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

    Google Scholar 

  41. Noyan, N., Rudolf, G., Papp, D., Alizadeh, F.: Bilinear Optimality Constraints For the Cone of Positive Polynomials. Math. Programming 129(1), 5–31 (2011)

    Google Scholar 

  42. Nemirovski, A., Scheinberg, K.: Extension of Karmarkar’s algorithm onto convex quadratically constrained quadratic programming. Math. Programming 72, 273–289 (1996)

    Google Scholar 

  43. Nesterov, Y.E., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming. Math. of Oper. Res. 22, 1–42 (1997)

    Google Scholar 

  44. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8, 324–364 (1998)

    Google Scholar 

  45. Pataki, G.: Cone LP’s and Semidefinite Programs: Geometry and a Simplex-type Method. Proceedings of the fifth Integer Programming and Combinatorial Optimization (IPCO) conference (1996)

    Google Scholar 

  46. Papp, D., Collado, R., Alizadeh, F.: Extension of the semidefinite characterization of sum of squares functional systems to algebraic structures. Tech. Report 17-10, Rutgers Center for Operations Research (2010)

    Google Scholar 

  47. Schmieta, S.H., Alizadeh, F.: Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones. Math. of Oper. Res. 26(3), 543–564 (2001)

    Google Scholar 

  48. Schmieta, S.H., Alizadeh, F.: Extension of Commutative Class of Primal-Dual Interior Point Algorithms to Symmetric Cones. Math. Programming 96, 409–438 (2003)

    Google Scholar 

  49. Schafer, R.D.: An Introuduction to Nonassociative Algebras. Academic Press, New York (1966)

    Google Scholar 

  50. Schmieta, S.H.: Application of Jordan algebras to the design and analysis of interior-point algorithms for linear, quadratically constrained quadratic, and semi-definite programming. Ph.D. thesis, Rutgers Center for Operations Research, Rutgers University (1999)

    Google Scholar 

  51. Springer, T.A.: Jordan Algebras and Algebraic Groups. Springer-Verlag (1973)

    Google Scholar 

  52. Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optim. Methods Softw. 11, 141–182 (1999)

    Google Scholar 

  53. Vinberg, E.: The Theory of Homogeneous Cones. Transactions of the Moscow Mathematical Society 12, 340–403 (1963)

    Google Scholar 

  54. Xia, Y., Alizadeh, F.: The Q method for the Second Order Cone Programming. Computers and Oper. Research 35, 1510–1538 (2008)

    Google Scholar 

  55. Xia, Y., Alizadeh, F.: The Q Method for Symmetric Cone Programming. Journal of Optimization Theory and Applications 149(1), 102–137 (2011)

    Google Scholar 

  56. Ye, Y.: A class of projective transformations for linear programming. SIAM J. Comput. 19(3), 457–466 (1990)

    Google Scholar 

  57. Ye, Y.: An O(n3L) Potential Reduction Algorithm for Linear Programming. Math. Programming 50(2), 239–258 (1991)

    Google Scholar 

  58. Zhang, Y.: On extending primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8, 356–386 (1998)

    Google Scholar 

Download references

Acknowledgements

The author greatly appreciates the thorough reading of this chapter by an anonymous reviewer, and correcting numerous stylistic and some mathematical errors present in earlier versions. This work was supported in part by the US National Science Foundation Grant number CMMI-0935305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Alizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alizadeh, F. (2012). An Introduction to Formally Real Jordan Algebras and Their Applications in Optimization. In: Anjos, M.F., Lasserre, J.B. (eds) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0769-0_11

Download citation

Publish with us

Policies and ethics