Skip to main content

The Role of Inflammation and Blood Cells in Wound Healing

  • Chapter
  • First Online:

Abstract

Successful wound healing is a complex and elegant process, involving multiple cell types, hundreds of growth factors, and the time-dependent expression of thousands of genes. A basic understanding of this process will allow us to compare successful wound healing with the ineffective wound healing seen even after suture repair of the ACL. Comparing the two processes will allow us to determine where the problems lie in ACL healing so that we can come up with novel ways to improve healing. A review of the major phases of wound healing and key cell types involved in each phase is presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jacobson, M., Fufa, D., Abreu, E.L. et al, Platelets, but not erythrocytes, significantly affect cytokine release and scaffold contraction in a provisional scaffold model. Wound Repair Regen. 2008, May-Jun;16(3):370–8.

    Article  PubMed  Google Scholar 

  2. Mastrangelo AN, Vavken P, Fleming BC, Harrison SL, Murray MM. Reduced platelet concentration does not harm PRP effectiveness for ACL repair in a porcine in vivo model. J Orthop Res. 2011;29(7):1002–7.

    Article  PubMed  Google Scholar 

  3. Fredriksson K, Stridh H, Lundahl J, Rennard SI, Skold CM. Red blood cells inhibit proliferation and stimulate apoptosis in human lung fibroblasts in vitro. Scand J Immunol. 2004;59(6):559–65.

    Article  PubMed  CAS  Google Scholar 

  4. Harrison SL, Vavken P, Murray MM. Erythrocytes inhibit ligament fibroblast proliferation in a collagen scaffold. J Orthop Res. 2011;29(9):1361–6.

    Article  PubMed  CAS  Google Scholar 

  5. Witte MB, Thornton FJ, Efron DT, Barbul A. Enhancement of fibroblast collagen synthesis by nitric oxide. Nitric Oxide. 2000;4(6):572–82.

    Article  PubMed  CAS  Google Scholar 

  6. Schaffer MR, Efron PA, Thornton FJ, Klingel K, Gross SS, Barbul A. Nitric oxide, an autocrine regulator of wound fibroblast synthetic function. J Immunol. 1997;158(5):2375–81.

    PubMed  CAS  Google Scholar 

  7. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature reviews. Immunology. 2008;8(12):958–69.

    PubMed  CAS  Google Scholar 

  8. Brancato SK, Albina JE. Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol. 2011;178(1):19–25.

    Article  PubMed  CAS  Google Scholar 

  9. Andrade MG, de Freitas Brandao CJ, Sa CN, de Bittencourt TC, Sadigursky M. Evaluation of factors that can modify platelet-rich plasma properties. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(1):e5–12.

    Article  PubMed  Google Scholar 

  10. Castillo TN, Pouliot MA, Kim HJ, Dragoo JL. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39(2):266–71.

    Article  PubMed  Google Scholar 

  11. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–67.

    Article  PubMed  CAS  Google Scholar 

  12. Moojen DJ, Everts PA, Schure RM, et al. Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. J Orthop Res. 2008;26(3):404–10.

    Article  PubMed  Google Scholar 

  13. Cieslik-Bielecka A, Gazdzik TS, Bielecki TM, Cieslik T. Why the platelet-rich gel has antimicrobial activity? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(3):303–5; author reply 305–306.

    Article  PubMed  Google Scholar 

  14. Anitua E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants. 1999;14(4):529–35.

    PubMed  CAS  Google Scholar 

  15. Martin P, D’Souza D, Martin J, et al. Wound healing in the PU.1 null mouse–tissue repair is not dependent on inflammatory cells. Curr Biol. 2003;13(13):1122–8.

    Article  PubMed  CAS  Google Scholar 

  16. Cooper L, Johnson C, Burslem F, Martin P. Wound healing and inflammation genes revealed by array analysis of ‘macrophageless’ PU.1 null mice. Genome Biol. 2005;6(1):R5.

    Article  PubMed  Google Scholar 

  17. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 2004;359(1445):839–50.

    Article  PubMed  CAS  Google Scholar 

  18. Newton PM, Watson JA, Wolowacz RG, Wood EJ. Macrophages restrain contraction of an in vitro wound healing model. Inflammation. 2004;28(4):207–14.

    Article  PubMed  CAS  Google Scholar 

  19. Hantash BM, Zhao L, Knowles JA, Lorenz HP. Adult and fetal wound healing. Front Biosci. 2008;13:51–61.

    Article  PubMed  CAS  Google Scholar 

  20. Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL. Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Current drug targets. Inflamm Allergy. 2005;4(3):273–9.

    CAS  Google Scholar 

  21. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191–7.

    Article  PubMed  CAS  Google Scholar 

  22. Malech HL. The role of neutrophils in the immune system: an overview. Methods Mol Biol. 2007;412:3–11.

    Article  PubMed  CAS  Google Scholar 

  23. Teixeira CF, Zamuner SR, Zuliani JP, et al. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve. 2003;28(4):449–59.

    Article  PubMed  CAS  Google Scholar 

  24. Kou PM, Babensee JE. Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A. 2011;96(1):239–60.

    PubMed  Google Scholar 

  25. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest. 2002;109(1):41–50.

    PubMed  CAS  Google Scholar 

  26. Peters T, Sindrilaru A, Hinz B, et al. Wound-healing defect of CD18(−/−) mice due to a decrease in TGF-beta1 and myofibroblast differentiation. EMBO J. 2005;24(19):3400–10.

    Article  PubMed  CAS  Google Scholar 

  27. Zeinoun T, Aftimos G, Bou Saba S, Nammour S. Eosinophils and mastocytes in healing laser excision wounds. Lasers Med Sci. 2009;24(3):307–12.

    Article  PubMed  CAS  Google Scholar 

  28. Song BZ, Donoff RB, Tsuji T, Todd R, Gallagher GT, Wong DT. Identification of rabbit eosinophils and heterophils in cutaneous healing wounds. Histochem J. 1993;25(10):762–71.

    PubMed  CAS  Google Scholar 

  29. Riddle JM, Barnhart MI. The eosinophil as a source for profibrinolysin in acute inflammation. Blood. 1965;25:776–94.

    PubMed  CAS  Google Scholar 

  30. Li WY, Chong SS, Huang EY, Tuan TL. Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen. 2003;11(4):239–47.

    Article  PubMed  Google Scholar 

  31. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.

    Article  PubMed  Google Scholar 

  32. Lichtman AH, Chin J, Schmidt JA, Abbas AK. Role of interleukin 1 in the activation of T lymphocytes. Proc Natl Acad Sci USA. 1988;85(24):9699–703.

    Article  PubMed  CAS  Google Scholar 

  33. Peterson JM, Barbul A, Breslin RJ, Wasserkrug HL, Efron G. Significance of T-lymphocytes in wound healing. Surgery. 1987;102(2):300–5.

    PubMed  CAS  Google Scholar 

  34. Boyce DE, Jones WD, Ruge F, Harding KG, Moore K. The role of lymphocytes in human dermal wound healing. Br J Dermatol. 2000;143(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  35. Park JE, Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg. 2004;187(5A):11S–6.

    Article  PubMed  CAS  Google Scholar 

  36. Martin CW, Muir IF. The role of lymphocytes in wound healing. Br J Plast Surg. 1990;43(6):655–62.

    Article  PubMed  CAS  Google Scholar 

  37. Oliveira HC, Popi AF, Bachi AL, Nonogaki S, Lopes JD, Mariano M. B-1 cells modulate the kinetics of wound-healing process in mice. Immunobiology. 2010;215(3):215–22.

    Article  PubMed  CAS  Google Scholar 

  38. Nishio N, Ito S, Suzuki H, Isobe K. Antibodies to wounded tissue enhance cutaneous wound healing. Immunology. 2009;128(3):369–80.

    Article  PubMed  CAS  Google Scholar 

  39. Schmitt-Graff A, Desmouliere A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Archiv. 1994;425(1):3–24.

    Article  PubMed  CAS  Google Scholar 

  40. Xu J, Clark RA. Extracellular matrix alters PDGF regulation of fibroblast integrins. J Cell Biol. 1996;132(1–2):239–49.

    Article  PubMed  CAS  Google Scholar 

  41. Barbul A, Efron DT. Wound healing. In: Brunicardi FC, Andersen DK, Billiar TR, Dunn DL, Hunter JG, Pollock RE, editors. Schwartz’s principles of surgery. 8th ed. New York: McGraw-­Hill Professional; 2004. p. 1888.

    Google Scholar 

  42. Pricolo VE, Caldwell MD, Mastrofrancesco B, Mills CD. Modulatory activities of wound fluid on fibroblast proliferation and collagen synthesis. J Surg Res. 1990;48(6):534–8.

    Article  PubMed  CAS  Google Scholar 

  43. Regan MC, Kirk SJ, Wasserkrug HL, Barbul A. The wound environment as a regulator of fibroblast phenotype. J Surg Res. 1991;50(5):442–8.

    Article  PubMed  CAS  Google Scholar 

  44. Ghani QP, Wagner S, Hussain MZ. Role of ADP-ribosylation in wound repair. The contributions of Thomas K. Hunt, MD. Wound Repair Regen. 2003;11(6):439–44.

    Article  PubMed  Google Scholar 

  45. Chamberlain CS, Leiferman EM, Frisch KE, et al. The influence of interleukin-4 on ligament healing. Wound Repair Regen. 2011;19(3):426–35.

    Article  PubMed  Google Scholar 

  46. Levenson SM, Geever EF, Crowley LV, Oates 3rd JF, Berard CW, Rosen H. The healing of rat skin wounds. Ann Surg. 1965;161:293–308.

    Article  PubMed  CAS  Google Scholar 

  47. Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol. 2001;70:1–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Research reported in this chapter was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers RO1-AR052772 and RO1-AR054099. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha M. Murray MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chao, L.H., Murray, M.M. (2013). The Role of Inflammation and Blood Cells in Wound Healing. In: Murray, M., Vavken, P., Fleming, B. (eds) The ACL Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0760-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0760-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0759-1

  • Online ISBN: 978-1-4614-0760-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics