Skip to main content

In Vivo Models of ACL Injury (Central Defect, Porcine, Ovine, Canine)

  • Chapter
  • First Online:
Book cover The ACL Handbook

Abstract

Animal models are an indispensable tool for developing and testing new potential treatments of acute injuries and chronic diseases of all parts of the body, including the knee joint. However, when using animal models to study a particular disease or problem, careful attention to the similarities and differences of those models to the human condition is critical. With the understandings of the translational strengths and weaknesses of each model, the investigator can choose the model with the optimal human representation for the specific question being asked.

For ACL injury, there are several large animal models that have been reported and are still in use. Among these are the mouse, rabbit, dog, sheep, goat, and the pig. The following chapter will give insight into the different animal models for ACL injury, will detail the similarities and differences with the human condition, and will review what has been learned from studies in these animals to date for ACL injury and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kibler WB. Orthopedic knowledge update 4: sports medicine. Rosemont: American Academy of Orthopedic Surgeons; 2009. p. 135.

    Google Scholar 

  2. McIntosh AL, Dahm DL, Stuart MJ. Anterior cruciate ligament reconstruction in the skeletally immature patient. Arthroscopy. 2006;22(12):1325–30.

    Article  PubMed  Google Scholar 

  3. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–52.

    Article  PubMed  CAS  Google Scholar 

  4. Lanzetta A, Corradini C, Verdoia C, Miani A, Castano S, Castano P. The nervous structures of anterior cruciate ligament of human knee, healthy and lesioned, studied with confocal scanning laser microscopy. Ital J Anat Embryol. 2004;109(3):167–76.

    PubMed  Google Scholar 

  5. Gomez-Barrena E, Bonsfills N, Martin JG, Ballesteros-Masso R, Foruria A, Nunez-Molina A. Insufficient recovery of neuromuscular activity around the knee after experimental anterior cruciate ligament reconstruction. Acta Orthop. 2008;79(1):39–47.

    Article  PubMed  Google Scholar 

  6. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W. Dynamic function of the ACL-­reconstructed knee during running. Clin Orthop Relat Res. 2007;454:66–73.

    Article  PubMed  Google Scholar 

  7. Beynnon BD, Uh BS, Johnson RJ, et al. Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals. Am J Sports Med. 2005;33(3):347–59.

    Article  PubMed  Google Scholar 

  8. Mohtadi N, Grant J. Managing anterior cruciate ligament deficiency in the skeletally immature individual: a systematic review of the literature. Clin J Sport Med. 2006;16(6):457–64.

    Article  PubMed  Google Scholar 

  9. Wester W, Canale ST, Dutkowsky JP, Warner WC, Beaty JH. Prediction of angular deformity and leg-length discrepancy after anterior cruciate ligament reconstruction in skeletally immature patients. J Pediatr Orthop. 1994;14(4):516–21.

    Article  PubMed  CAS  Google Scholar 

  10. Vavken P, Murray MM. Translational studies in anterior cruciate ligament repair. Tissue Eng Part A. 2010;16(1):5–11.

    Article  Google Scholar 

  11. Arnoczky SP, Cook JL, Carter T, Turner AS. Translational models for studying meniscal repair and replacement: what they can and cannot tell us. Tissue Eng Part B Rev. 2010;16(1):31–9.

    Article  PubMed  Google Scholar 

  12. Reinwald S, Burr D. Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res. 2008;23(9):1353–68.

    Article  PubMed  Google Scholar 

  13. Meller R, Kendoff D, Hankemeier S, et al. Hindlimb growth after a transphyseal reconstruction of the anterior cruciate ligament: a study in skeletally immature sheep with wide-open physes. Am J Sports Med. 2008;36(12):2437–43.

    Article  PubMed  Google Scholar 

  14. Huangfu X, Zhao J. Tendon-bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament reconstruction model. Arthroscopy. 2007;23(5):455–62.

    Article  PubMed  Google Scholar 

  15. Isaac DI, Meyer EG, Haut RC. Development of a traumatic anterior cruciate ligament and meniscal rupture model with a pilot in vivo study. J Biomech Eng. 2010;132(6):064501.

    Article  PubMed  Google Scholar 

  16. Murray MM, Magarian E, Zurakowski D, Fleming BC. Bone-to-bone fixation enhances functional healing of the porcine anterior cruciate ligament using a collagen-platelet composite. Arthroscopy. 2010;26(9 Suppl):S49–57.

    PubMed  Google Scholar 

  17. Spindler KP, Murray MM, Carey JL, Zurakowski D, Fleming BC. The use of platelets to affect functional healing of an anterior cruciate ligament (ACL) autograft in a caprine ACL reconstruction model. J Orthop Res. 2009;27(5):631–8.

    Article  PubMed  Google Scholar 

  18. Proffen BM, Martha MM, McElfresh M, Fleming BC. Anatomy of the cruciate ligaments and menisci in seven species. Transactions vol 36. Orthopedic Research Society, Long Beach; 2011

    Google Scholar 

  19. Murray MM, Spector M. Fibroblast distribution in the anteromedial bundle of the human anterior cruciate ligament: the presence of alpha-smooth muscle actin-positive cells. J Orthop Res. 1999;17(1):18–27.

    Article  PubMed  CAS  Google Scholar 

  20. Murray MM, Weiler A, Spindler KP. Interspecies variation in the fibroblast distribution of the anterior cruciate ligament. Am J Sports Med. 2004;32(6):1484–91.

    Article  PubMed  Google Scholar 

  21. Kadonishi Y, Deie M, Takata T, Ochi M. Acceleration of tendon-bone healing in anterior cruciate ligament reconstruction using an enamel matrix derivative in a rat model. J Bone Joint Surg Br. 2012;94(2):205–9.

    PubMed  CAS  Google Scholar 

  22. Brophy RH, Kovacevic D, Imhauser CW, et al. Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am. 2011;93(4):381–93.

    Article  PubMed  Google Scholar 

  23. Bedi A, Kovacevic D, Fox AJ, et al. Effect of early and delayed mechanical loading on tendon-­to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2010;92(14):2387–401.

    Article  PubMed  Google Scholar 

  24. Hays PL, Kawamura S, Deng XH, et al. The role of macrophages in early healing of a tendon graft in a bone tunnel. J Bone Joint Surg Am. 2008;90(3):565–79.

    Article  PubMed  Google Scholar 

  25. Dagher E, Hays PL, Kawamura S, Godin J, Deng XH, Rodeo SA. Immobilization modulates macrophage accumulation in tendon-bone healing. Clin Orthop Relat Res. 2009;467(1):281–7.

    Article  PubMed  Google Scholar 

  26. Kanaya A, Deie M, Adachi N, Nishimori M, Yanada S, Ochi M. Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy. 2007;23(6):610–7.

    Article  PubMed  Google Scholar 

  27. Oe K, Kushida T, Okamoto N, et al. New strategies for anterior cruciate ligament partial rupture using bone marrow transplantation in rats. Stem Cells Dev. 2011;20(4):671–9.

    Article  PubMed  CAS  Google Scholar 

  28. Babb JR, Ahn JI, Azar FM, Canale ST, Beaty JH. Transphyseal anterior cruciate ligament reconstruction using mesenchymal stem cells. Am J Sports Med. 2008;36(6):1164–70.

    Article  PubMed  Google Scholar 

  29. Lui PP, Ho G, Shum WT, et al. Inferior tendon graft to bone tunnel healing at the tibia compared to that at the femur after anterior cruciate ligament reconstruction. J Orthop Sci. 2010;15(3):389–401.

    Article  PubMed  Google Scholar 

  30. Nikolaou VS, Efstathopoulos N, Sourlas I, Pilichou A, Papachristou G. Anatomic double-­bundle versus single-bundle ACL reconstruction: a comparative biomechanical study in rabbits. Knee Surg Sports Traumatol Arthrosc. 2009;17(8):895–906.

    Article  PubMed  Google Scholar 

  31. Xu Y, Ao YF. Histological and biomechanical studies of inter-strand healing in four-strand autograft anterior cruciate ligament reconstruction in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):770–7.

    Article  PubMed  Google Scholar 

  32. Xie GM, Huang Fu XQ, Zhao JZ. The effect of remnant preservation on patterns of gene expression in a rabbit model of anterior cruciate ligament reconstruction. J Surg Res. 2012;176(2):510–6.

    Article  PubMed  CAS  Google Scholar 

  33. Bhatia S, Bell R, Frank RM, et al. Bony incorporation of soft tissue anterior cruciate ligament grafts in an animal model: autograft versus allograft with low-dose gamma irradiation. Am J Sports Med. 2012;40(8):1789–98.

    Article  PubMed  Google Scholar 

  34. Tischer T, Aryee S, Wexel G, et al. Tissue engineering of the anterior cruciate ligament-­sodium dodecyl sulfate-acellularized and revitalized tendons are inferior to native tendons. Tissue Eng Part A. 2010;16(3):1031–40.

    Article  PubMed  CAS  Google Scholar 

  35. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med. 2007;35(6):962–71.

    Article  PubMed  Google Scholar 

  36. Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc. 2007;15(10):1219–27.

    Article  PubMed  Google Scholar 

  37. Wei X, Mao Z, Hou Y, et al. Local administration of TGFbeta-1/VEGF165 gene-transduced bone mesenchymal stem cells for Achilles allograft replacement of the anterior cruciate ligament in rabbits. Biochem Biophys Res Commun. 2011;406(2):204–10.

    Article  PubMed  CAS  Google Scholar 

  38. Hashimoto Y, Naka Y, Fukunaga K, Nakamura H, Takaoka K. ACL reconstruction using bone-tendon-bone graft engineered from the semitendinosus tendon by injection of recombinant BMP-2 in a rabbit model. J Orthop Res. 2011;29(12):1923–30.

    Article  PubMed  CAS  Google Scholar 

  39. Kanazawa T, Soejima T, Murakami H, Inoue T, Katouda M, Nagata K. An immunohistological study of the integration at the bone-tendon interface after reconstruction of the anterior cruciate ligament in rabbits. J Bone Joint Surg Br. 2006;88(5):682–7.

    PubMed  CAS  Google Scholar 

  40. Pan W, Hu Y, Wei Y, et al. Recombined bone xenografts enhance tendon graft osteointegration of anterior cruciate ligament reconstruction. Int Orthop. 2009;33(6):1761–8.

    Article  PubMed  Google Scholar 

  41. Pan W, Wei Y, Zhou L, Li D. Comparative in vivo study of injectable biomaterials combined with BMP for enhancing tendon graft osteointegration for anterior cruciate ligament reconstruction. J Orthop Res. 2011;29(7):1015–21.

    Article  PubMed  CAS  Google Scholar 

  42. Fan H, Liu H, Wong EJ, Toh SL, Goh JC. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29(23):3324–37.

    Article  PubMed  CAS  Google Scholar 

  43. Wilke VL, Robinson DA, Evans RB, Rothschild MF, Conzemius MG. Estimate of the annual economic impact of treatment of cranial cruciate ligament injury in dogs in the United States. J Am Vet Med Assoc. 2005;227(10):1604–7.

    Article  PubMed  Google Scholar 

  44. Massat BJ, Vasseur PB. Clinical and radiographic results of total hip arthroplasty in dogs: 96 cases (1986–1992). J Am Vet Med Assoc. 1994;205(3):448–54.

    PubMed  CAS  Google Scholar 

  45. Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982;64(2):217–24.

    PubMed  CAS  Google Scholar 

  46. Curtis RJ, Delee JC, Drez Jr DJ. Reconstruction of the anterior cruciate ligament with freeze dried fascia lata allografts in dogs. A preliminary report. Am J Sports Med. 1985;13(6): 408–14.

    Article  PubMed  CAS  Google Scholar 

  47. Denny HR, Goodship AE. Replacement of the anterior cruciate ligament with carbon fibre in the dog. J Small Anim Pract. 1980;21(5):279–86.

    Article  PubMed  CAS  Google Scholar 

  48. Chauvet AE, Johnson AL, Pijanowski GJ, Homco L, Smith RD. Evaluation of fibular head transposition, lateral fabellar suture, and conservative treatment of cranial cruciate ligament rupture in large dogs: a retrospective study. J Am Anim Hosp Assoc. 1996;32(3):247–55.

    PubMed  CAS  Google Scholar 

  49. Slocum B, Slocum TD. Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin North Am Small Anim Pract. 1993;23(4):777–95.

    PubMed  CAS  Google Scholar 

  50. Spindler KP, Murray MM, Devin C, Nanney LB, Davidson JM. The central ACL defect as a model for failure of intra-articular healing. J Orthop Res. 2006;24(3):401–6.

    Article  PubMed  CAS  Google Scholar 

  51. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy. 2001;17(5):461–76.

    Article  PubMed  CAS  Google Scholar 

  52. Qi L, Chang C, Jian L, Xin T, Gang Z. Effect of varying the length of soft-tissue grafts in the tibial tunnel in a canine anterior cruciate ligament reconstruction model. Arthroscopy. 2011;27(6):825–33.

    Article  PubMed  Google Scholar 

  53. Goertzen MJ, Clahsen H, Schulitz KP. Anterior cruciate ligament reconstruction using cryopreserved irradiated bone-ACL-bone-allograft transplants. Knee Surg Sports Traumatol Arthrosc. 1994;2(3):150–7.

    Article  PubMed  CAS  Google Scholar 

  54. Yamazaki S, Yasuda K, Tomita F, Tohyama H, Minami A. The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy. 2005;21(9):1034–41.

    Article  PubMed  Google Scholar 

  55. Tanaka N. Early revascularization of the reconstructed anterior cruciate ligament using a patellar tendon autograft. Nihon Seikeigeka Gakkai Zasshi. 1993;67(10):953–62.

    PubMed  CAS  Google Scholar 

  56. Goertzen M, Gruber J, Dellmann A, Clahsen H, Schulitz KP. Neurohistological studies in allogeneic cruciate ligament transplants as intra-articular ligament replacement. Z Orthop Ihre Grenzgeb. 1993;131(5):420–4.

    Article  PubMed  CAS  Google Scholar 

  57. Murray MM, Spindler KP, Devin C, et al. Use of a collagen-platelet rich plasma scaffold to stimulate healing of a central defect in the canine ACL. J Orthop Res. 2006;24(4):820–30.

    Article  PubMed  CAS  Google Scholar 

  58. Rumian AP, Wallace AL, Birch HL. Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features – a comparative study in an ovine model. J Orthop Res. 2007;25(4):458–64.

    Article  PubMed  CAS  Google Scholar 

  59. Seitz H, Hausner T, Schlenz I, Lang S, Eschberger J. Vascular anatomy of the ovine anterior cruciate ligament. A macroscopic, histological and radiographic study. Arch Orthop Trauma Surg. 1997;116(1–2):19–21.

    Article  PubMed  CAS  Google Scholar 

  60. Halata Z, Wagner C, Baumann KI. Sensory nerve endings in the anterior cruciate ligament (Lig. cruciatum anterius) of sheep. Anat Rec. 1999;254(1):13–21.

    Article  PubMed  CAS  Google Scholar 

  61. Raunest J, Sager M, Burgener E. Proprioception of the cruciate ligaments: receptor mapping in an animal model. Arch Orthop Trauma Surg. 1998;118(3):159–63.

    Article  PubMed  CAS  Google Scholar 

  62. Raunest J, Sager M, Burgener E. Proprioceptive mechanisms in the cruciate ligaments: an electromyographic study on reflex activity in the thigh muscles. J Trauma. 1996;41(3): 488–93.

    Article  PubMed  CAS  Google Scholar 

  63. Hunt P, Scheffler SU, Unterhauser FN, Weiler A. A model of soft-tissue graft anterior cruciate ligament reconstruction in sheep. Arch Orthop Trauma Surg. 2005;125(4):238–48.

    Article  PubMed  Google Scholar 

  64. Milano G, Mulas PD, Sanna-Passino E, Careddu GM, Ziranu F, Fabbriciani C. Evaluation of bone plug and soft tissue anterior cruciate ligament graft fixation over time using transverse femoral fixation in a sheep model. Arthroscopy. 2005;21(5):532–9.

    Article  PubMed  Google Scholar 

  65. Zantop T, Weimann A, Wolle K, Musahl V, Langer M, Petersen W. Initial and 6 weeks postoperative structural properties of soft tissue anterior cruciate ligament reconstructions with cross-pin or interference screw fixation: an in vivo study in sheep. Arthroscopy. 2007;23(1): 14–20.

    Article  PubMed  Google Scholar 

  66. Mayr HO, Dietrich M, Fraedrich F, et al. Microporous pure beta-tricalcium phosphate implants for press-fit fixation of anterior cruciate ligament grafts: strength and healing in a sheep model. Arthroscopy. 2009;25(9):996–1005.

    Article  PubMed  Google Scholar 

  67. Laitinen O, Pohjonen T, Tormala P, et al. Mechanical properties of biodegradable poly-L-lactide ligament augmentation device in experimental anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg. 1993;112(6):270–4.

    Article  PubMed  CAS  Google Scholar 

  68. Shaw JC, Christopher R, Palmer R, Nichols A, Turner A, Boivin G, Hunter S. Biomechanical Comparison of supercritical CO2 treated and gamma irradiated tendon allografts with autograft. Transactions vol 35. Orthopedic Research Society, New Orleans; 2010.

    Google Scholar 

  69. Scheffler SU, Schmidt T, Gangey I, Dustmann M, Unterhauser F, Weiler A. Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy. 2008;24(4):448–58.

    Article  PubMed  Google Scholar 

  70. Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffmann RF. Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy. 2002;18(2):113–23.

    Article  PubMed  Google Scholar 

  71. Jaskulka R, Ittner G, Birkner T. Replacement of the anterior cruciate ligament by cold preserved bone-cruciate ligament-bone allotransplants. An experimental study in the sheep. Unfallchirurg. 1997;100(9):724–36.

    Article  PubMed  CAS  Google Scholar 

  72. Schmidt T, Hoburg A, Broziat C, et al. Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL). Cell Tissue Bank. 2012;13(3):387–400.

    Article  PubMed  CAS  Google Scholar 

  73. Meller R, Willbold E, Hesse E, et al. Histologic and biomechanical analysis of anterior cruciate ligament graft to bone healing in skeletally immature sheep. Arthroscopy. 2008;24(11): 1221–31.

    Article  PubMed  Google Scholar 

  74. Kondo E, Yasuda K, Katsura T, Hayashi R, Azuma C, Tohyama H. Local administration of autologous synovium-derived cells improve the structural properties of anterior cruciate ligament autograft reconstruction in sheep. Am J Sports Med. 2011;39(5):999–1007.

    Article  PubMed  Google Scholar 

  75. Roy S, Fernhout M, Stanley R, et al. Tibial interference screw fixation in anterior cruciate ligament reconstruction with and without autograft bone augmentation. Arthroscopy. 2010;26(7):949–56.

    Article  PubMed  Google Scholar 

  76. Richter M, Durselen L, Ignatius A, Missler F, Claes L, Kiefer H. Acutely repaired proximal anterior cruciate ligament ruptures in sheep – by augmentation improved stability and reduction of cartilage damage. J Mater Sci Mater Med. 1997;8(12):855–9.

    Article  PubMed  CAS  Google Scholar 

  77. Murray MM, Spindler KP, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.

    Article  PubMed  Google Scholar 

  78. Holden JP, Grood ES, Korvick DL, Cummings JF, Butler DL, Bylski-Austrow DI. In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech. 1994;27(5):517–26.

    Article  PubMed  CAS  Google Scholar 

  79. Tischer T, Ronga M, Tsai A, et al. Biomechanics of the goat three bundle anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2009;17(8):935–40.

    Article  PubMed  CAS  Google Scholar 

  80. Zantop T, Ferretti M, Bell KM, Brucker PU, Gilbertson L, Fu FH. Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: intra-articular study in a goat model. Am J Sports Med. 2008;36(11):2158–66.

    Article  PubMed  Google Scholar 

  81. Buma P, Kok HJ, Blankevoort L, Kuijpers W, Huiskes R, Van Kampen A. Augmentation in anterior cruciate ligament reconstruction-a histological and biomechanical study on goats. Int Orthop. 2004;28(2):91–6.

    Article  PubMed  CAS  Google Scholar 

  82. Cummings JF, Grood ES, Levy MS, Korvick DL, Wyatt R, Noyes FR. The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J Orthop Res. 2002;20(2):338–45.

    Article  PubMed  CAS  Google Scholar 

  83. Abramowitch SD, Papageorgiou CD, Withrow JD, Gilbert TW, Woo SL. The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats. J Orthop Res. 2003;21(4):708–15.

    Article  PubMed  Google Scholar 

  84. Cummings JF, Grood ES. The progression of anterior translation after anterior cruciate ligament reconstruction in a caprine model. J Orthop Res. 2002;20(5):1003–8.

    Article  PubMed  CAS  Google Scholar 

  85. Fleming BC, Abate JA, Peura GD, Beynnon BD. The relationship between graft tensioning and the anterior-posterior laxity in the anterior cruciate ligament reconstructed goat knee. J Orthop Res. 2001;19(5):841–4.

    Article  PubMed  CAS  Google Scholar 

  86. Musahl V, Abramowitch SD, Gabriel MT, et al. Tensile properties of an anterior cruciate ligament graft after bone-patellar tendon-bone press-fit fixation. Knee Surg Sports Traumatol Arthrosc. 2003;11(2):68–74.

    PubMed  Google Scholar 

  87. Mutsuzaki H, Sakane M. Calcium phosphate-hybridized tendon graft to enhance tendon-­bone healing two years after ACL reconstruction in goats. Sports Med Arthrosc Rehabil Ther Technol. 2011;3(1):31.

    Article  PubMed  Google Scholar 

  88. Tremblay P, Cloutier R, Lamontagne J, et al. Potential of skin fibroblasts for application to anterior cruciate ligament tissue engineering. Cell Transplant. 2011;20(4):535–42.

    Article  PubMed  Google Scholar 

  89. Robayo LM, Moulin VJ, Tremblay P, et al. New ligament healing model based on tissue-­engineered collagen scaffolds. Wound Repair Regen. 2011;19(1):38–48.

    Article  PubMed  Google Scholar 

  90. Chvapil M, Speer DP, Holubec H, Chvapil TA, King DH. Collagen fibers as a temporary scaffold for replacement of ACL in goats. J Biomed Mater Res. 1993;27(3):313–25.

    Article  PubMed  CAS  Google Scholar 

  91. Fisher MB, Liang R, Jung HJ, et al. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surg Sports Traumatol Arthrosc. 2012;20(7):1357–65.

    Article  PubMed  Google Scholar 

  92. Fleming BC, Vajapeyam S, Connolly SA, Magarian EM, Murray MM. The use of magnetic resonance imaging to predict ACL graft structural properties. J Biomech. 2011;44(16):2843–6.

    Article  PubMed  Google Scholar 

  93. Mueller XM, Tevaearai HT, Jegger D, Tucker O, von Segesser LK. Are standard human coagulation tests suitable in pigs and calves during extracorporeal circulation? Artif Organs. 2001;25(7):579–84.

    Article  PubMed  CAS  Google Scholar 

  94. Xerogeanes JW, Fox RJ, Takeda Y, et al. A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Eng. 1998;26(3): 345–52.

    Article  PubMed  CAS  Google Scholar 

  95. Debandi A, Maeyama A, Lu S, et al. Biomechanical comparison of three anatomic ACL reconstructions in a porcine model. Knee Surg Sports Traumatol Arthrosc. 2011;19(5): 728–35.

    Article  PubMed  Google Scholar 

  96. Meuffels DE, Docter PT, van Dongen RA, Kleinrensink GJ, Verhaar JA, Reijman M. Stiffer fixation of the tibial double-tunnel anterior cruciate ligament complex versus the single tunnel: a biomechanical study. Arthroscopy. 2010;26(9 Suppl):S35–40.

    PubMed  Google Scholar 

  97. Bohn MB, Vestergaard R, Dalstra M, Jakobsen BW, Soballe K, Lind M. Mechanical stability of the femoral fixation for single- and double-bundle ACL reconstruction in an in vitro experimental model. Scand J Med Sci Sports. 2011 Oct 30. doi: 10.1111/j.1600-0838.2011.01402.x. [Epub ahead of print].

    Google Scholar 

  98. Kamelger FS, Onder U, Schmoelz W, Tecklenburg K, Arora R, Fink C. Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy. 2009;25(7):767–76.

    Article  PubMed  Google Scholar 

  99. Conner CS, Perez BA, Morris RP, Buckner JW, Buford Jr WL, Ivey FM. Three femoral fixation devices for anterior cruciate ligament reconstruction: comparison of fixation on the lateral cortex versus the anterior cortex. Arthroscopy. 2010;26(6):796–807.

    Article  PubMed  Google Scholar 

  100. Shen HC, Chang JH, Lee CH, et al. Biomechanical comparison of Cross-pin and Endobutton-CL femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction – a porcine femur-graft-tibia complex study. J Surg Res. 2010;161(2):282–7.

    Article  PubMed  Google Scholar 

  101. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med. 2003;31(2):182–8.

    PubMed  Google Scholar 

  102. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med. 2003;31(2):174–81.

    PubMed  Google Scholar 

  103. Milano G, Grasso A, Santagada DA, Saccomanno MF, Deriu L, Fabbriciani C. Comparison between metal and biodegradable suture anchors in the arthroscopic treatment of traumatic anterior shoulder instability: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc. 2010;18(12):1785–91.

    Article  PubMed  Google Scholar 

  104. Dargel J, Schmidt-Wiethoff R, Bruggemann GP, Koebke J. The effect of bone tunnel dilation versus extraction drilling on the initial fixation strength of press-fit anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg. 2007;127(9):801–7.

    Article  PubMed  Google Scholar 

  105. Adam F, Pape D, Schiel K, Steimer O, Kohn D, Rupp S. Biomechanical properties of patellar and hamstring graft tibial fixation techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis. Am J Sports Med. 2004;32(1):71–8.

    Article  PubMed  Google Scholar 

  106. Fleming BC, Carey JL, Spindler KP, Murray MM. Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An ex vivo study. J Orthop Res. 2008;26(11):1500–5.

    Article  PubMed  Google Scholar 

  107. Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM. Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med. 2009;37(8):1554–63.

    Article  PubMed  Google Scholar 

  108. Fleming BC, Magarian EM, Harrison SL, Paller DJ, Murray MM. Collagen scaffold supplementation does not improve the functional properties of the repaired anterior cruciate ligament. J Orthop Res. 2010;28(6):703–9.

    PubMed  CAS  Google Scholar 

  109. Murray MM, Palmer M, Abreu E, Spindler KP, Zurakowski D, Fleming BC. Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res. 2009;27(5):639–45.

    Article  PubMed  Google Scholar 

  110. Joshi SM, Mastrangelo AN, Magarian EM, Fleming BC, Murray MM. Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament. Am J Sports Med. 2009;37(12):2401–10.

    Article  PubMed  Google Scholar 

  111. Vavken P, Fleming BC, Mastrangelo AN, Machan JT, Murray MM. Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy. 2012;28(5):672–80.

    Article  PubMed  Google Scholar 

  112. Mastrangelo AN, Haus BM, Vavken P, Palmer MP, Machan JT, Murray MM. Immature ­animals have higher cellular density in the healing anterior cruciate ligament than adolescent or adult animals. J Orthop Res. 2010;28(8):1100–6.

    PubMed  Google Scholar 

  113. Mastrangelo AN, Vavken P, Fleming BC, Harrison SL, Murray MM. Reduced platelet ­concentration does not harm PRP effectiveness for ACL repair in a porcine in vivo model. J Orthop Res. 2011;29(7):1002–7.

    Article  PubMed  Google Scholar 

  114. Yeh WL, Lin SS, Yuan LJ, Lee KF, Ueng SW. Effects of hyperbaric oxygen treatment on tendon graft and tendon-bone integration in bone tunnel: biochemical and histological analysis in rabbits. J Orthop Res 2007;25(5):703–9.

    Article  PubMed  Google Scholar 

  115. Holzmueller W, Rehm KE, Perren SM. Mechanical properties of PDS-augmented patellar tendon transplants in reconstruction of the anterior cruciate ligament. Unfallchirurg 1992; 95(6):306–10.

    Article  PubMed  Google Scholar 

  116. Proffen B, Vavken P, Palmer R, Fleming BC, Murray MM. The Mature Sheep as an Animal Model for Bio-enhanced anterior cruciate ligament repair and reconstruction. In: The Knee: Current Concepts in Kinematics, Injury Types, and Treatment Options. Mascarenhas R (Ed). New York, Nova Science Publishers, 2012; p.117–29.

    Article  PubMed  Google Scholar 

  117. Murray MM, Magarian E, Zurokowski D, Fleming BC. Bone-to-bone fixation enhances functional healing of the porcine anterior cruciate ligament using a collagen-platelet composite. Arthrosc. 2010;29(9) [Suppl 1]: S49–S57.

    Article  PubMed  Google Scholar 

  118. Milano G, Mulas PD, Ziranu F, Deriu L, Fabbriciani C. Comparison of femoral fixation methods for anterior cruciate ligament reconstruction with patellar tendon graft: A mechanical analysis in porcine knees. Knee Surg Sports Traumatol Arthrosc. 2007;15(6):733–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this chapter was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers RO1-AR054099 and RO1-AR056834. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Lorenz Proffen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Proffen, B.L., Murray, M.M. (2013). In Vivo Models of ACL Injury (Central Defect, Porcine, Ovine, Canine). In: Murray, M., Vavken, P., Fleming, B. (eds) The ACL Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0760-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0760-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0759-1

  • Online ISBN: 978-1-4614-0760-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics