Advertisement

Digital Image Formats

Chapter

Abstract

Images contain a significant amount of information which translates to substantial memory for storage. In this chapter we briefly describe various formats in which images are stored. Of necessity this entails some description of image compression.

Keywords

Discrete Cosine Transform Lossy Compression Predictive Code Arithmetic Code Huffman Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656MathSciNetGoogle Scholar
  2. 2.
    Huffman DA (1951) A method for the construction of minimum redundancy codes. Proc IRE 40:1098–1101CrossRefGoogle Scholar
  3. 3.
    Deutsch P (1996) RFC 1951-DEFLATE compressed data format specification version 1.3. http://www.faqs.org/rfcs/rfc1951.htm
  4. 4.
    Rissanen JJ (May 1976) Generalized kraft inequality and arithmetic coding. IBM J Res Dev 20:198–203MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Pasco R (1976) Source coding algorithms for fast data compression. Ph.D. thesis, Stanford UniversityGoogle Scholar
  6. 6.
    CCITT Blue Book (1989) Terminal equipment and protocols for telematic services—recommendations t.0–t.63. International Telecommunication Union, GenevaGoogle Scholar
  7. 7.
  8. 8.
    Ziv J, Lempel A (1977) A universal algorithm for data compression. IEEE Trans Inf Theory IT-23(3):337–343Google Scholar
  9. 9.
    Ziv J, Lempel A (1978) Compression of individual sequences via variable-rate coding. IEEE Trans Inf Theory IT-24(5):530–536Google Scholar
  10. 10.
    Sayood K (2005) Introduction to data compression, 3rd edn. Morgan Kauffman, San FranciscoGoogle Scholar
  11. 11.
    Storer JA, Syzmanski TG (1982) Data compression via textual substitution. J ACM 29:928–951MATHCrossRefGoogle Scholar
  12. 12.
    Wu X, Memon ND (1996) CALIC-A context based adaptive lossless image coding scheme. IEEE Trans Commun 45:437–444Google Scholar
  13. 13.
    Adams D (1979) The Hitchhiker’s guide to the galaxyGoogle Scholar
  14. 14.
  15. 15.
    Malvar HS (1992) Signal processing with lapped transforms. Artech House, NorwoodMATHGoogle Scholar
  16. 16.
    Shapiro JM (1992) An embedded heirarchical image coder using zerotrees of wavelet coefficients. In: Proceedings DCC ’92, IEEE, pp 215–223Google Scholar
  17. 17.
    Said A, Pearlman WA (1996) A new fast and efficient coder based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6:243–250Google Scholar
  18. 18.
    Taubman D, Zakhor A (1994) Multirate 3-D subband coding with motion compensation. IEEE Trans Image Process IP-3:572–588Google Scholar
  19. 19.
    Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Trans Image Process IP-9:1158–1170Google Scholar
  20. 20.
    Taubman D, Marcellin M (2001) JPEG2000: image compression fundamentals, standards and practice. Kluwer Academic Press, BostonGoogle Scholar
  21. 21.
    ISO/IEC JTC1/SC29 WG1 (2004) JPEG 2000 image coding system: core coding systemGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of Nebraska LincolnLincolnUSA

Personalised recommendations