Skip to main content

Laplacian Spectra and Synchronization Processes on Complex Networks

  • Chapter
  • First Online:
Handbook of Optimization in Complex Networks

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 57))

Abstract

The spectrum of the Laplacian matrix of a network contains a great deal of information about the network structure and plays a fundamental role in the dynamical behavior of the network. This chapter is to explore and analyze the Laplacian eigenvalue distributions of several typical network models, to study the network dynamics towards synchronization at a mesoscale level of description, and to report the finding of a relation between the spectral information of the Laplacian matrix and the dynamics in the network synchronization process. First, an example of adding long-distance edges is given to show that the network synchronizability may not be directly inferred from statistical properties of the network. Then, the Laplacian eigenvalues of several representative complex networks are shown to possess very different properties, and yet they also share some common features meanwhile. Further, the correlation between the Laplacian spectrum and the node-degree sequence of a network is investigated, revealing that scale-free networks have the highest correlation values, followed by random networks and then by small-world networks. To that end, a simple local prediction–correction algorithm is presented for approximating the eigenvalue λ i+1 from λ i , i=1, 2, ⋯, N, where N is the network size. Finally, it is shown that the processes of synchronization and generalized synchronization (GS) display different patterns, depending intrinsically on the topological structures of the networks. It is found that in the process of synchronization (or GS), roughly speaking, synchronization (or GS) first starts from a small part of hub nodes and then spreads to the other nodes with smaller degrees. It is also demonstrated that, for community networks, a typical synchronization process generally starts from partial synchronization through cluster synchronization to evolve to global complete synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–92 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Advances in physics 51, 1079–1187 (2002).

    Google Scholar 

  3. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwanga, D.-U.: Complex networks: Structure and dynamics. Physics Reports 424, 175–308 (2006).

    Article  MathSciNet  Google Scholar 

  5. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, UK (2010).

    MATH  Google Scholar 

  6. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature (London) 406, 378–382 (2000).

    Google Scholar 

  7. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000).

    Article  Google Scholar 

  8. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001).

    Article  Google Scholar 

  9. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26, 521–529 (2002).

    Google Scholar 

  10. Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003).

    Article  Google Scholar 

  11. Sorrentino, F., di Bernardo, M., Garofalo, F.: Synchronizability and synchronization dynamics of complex networks with degree-degree mixing. Int. J. Bifurcation Chaos, 17, 2419–2434 (2007).

    Article  MATH  Google Scholar 

  12. Hong, H., Kim, B.J., Choi, M.Y., Park, H.: Factors that predict better synchronizability on complex networks. Phys. Rev. E 65, 067105 (2002).

    Google Scholar 

  13. Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).

    Article  Google Scholar 

  14. Hong, H., Choi, M.Y., Kim, B.J.: Synchronization on small-world networks. Phys. Rev. E 69, 026139 (2004).

    Article  Google Scholar 

  15. Atay, F.M., Bıyıkoǧlu, T., Jost, J.: Network synchronization: Spectral versus statistical properties. Physica D 224, 35–41 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, G., Duan, Z.: Network synchronizability analysis: A graph-theoretic approach. Chaos 18, 037102 (2008).

    Article  MathSciNet  Google Scholar 

  17. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

    Article  Google Scholar 

  18. Jost, J., Joy, M.P.: Spectral properties and synchronization in coupled map lattices. Phys. Rev. E 65 016201 (2002).

    Article  MathSciNet  Google Scholar 

  19. Lü, J., Yu, X., Chen, G., Cheng, D.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst. I 51, 787–796 (2004).

    Article  Google Scholar 

  20. Nishikawa, T., Motter, A.E.: Maximum performance at minimum cost in network synchronization. Physica D 224, 77–89 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

    Article  MathSciNet  Google Scholar 

  22. Oh, E., Rho, K., Hong, H., Kahng, B.: Modular synchronization in complex networks. Phys. Rev. E 72, 047101 (2005).

    Article  Google Scholar 

  23. Zhou, C., Kurths, J.: Hierarchical synchronization in complex networks with heterogenous degrees. Chaos 16, 015104 (2006).

    Article  MathSciNet  Google Scholar 

  24. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex network. Phys. Rev. Lett. 96, 114102 (2006).

    Article  Google Scholar 

  25. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization processes in complex networks. Physica D 224 27–34 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  26. Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007).

    Article  Google Scholar 

  27. Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Synchronizability determined by coupling strengths and topology on complex networks. Phys. Rev. E. 75, 066106 (2007).

    Article  MathSciNet  Google Scholar 

  28. Hung, Y.C., Huang, Y.T., Ho, M.C., Hu, C.K.: Paths to globally generalized synchronization in scale-free networks. Phys. Rev. E 77, 016202 (2008).

    Article  Google Scholar 

  29. Wu, W., Chen, T.P.: Partial synchronization in linearly and symmetrically coupled ordinary differential systems. Physica D 238, 355–364 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. Guan, S.G., Wang, X.G., Gong, X.F., Li, K., Lai, C.H.: The development of generalized synchronization on complex networks. Chaos 19, 013130 (2009).

    Article  Google Scholar 

  31. Chen, J., Lu, J., Wu, X., Zheng, W.X.: Generalized synchronization of complex dynamical networks via impulsive control. Chaos 19, 043119 (2009).

    Article  Google Scholar 

  32. Liu, H., Chen, J., Lu, J., Cao, M.: Generalized synchronization in complex dynamical networks via adaptive couplings,. Physica A 389, 1759–1770 (2010).

    Article  Google Scholar 

  33. Mohar, B.: Graph Laplacians. In: Topics in Algebraic Graph Theory, pp. 113–136. Cambridge University Press, Cambridge (2004).

    Google Scholar 

  34. Atay, F.M., Bıyıkoǧlu, T.: Graph operations and synchronization of complex networks. Phys. Rev. E 72, 016217 (2005).

    Article  MathSciNet  Google Scholar 

  35. Biggs, N.: Algebraic Graph Theory. 2nd ed., Cambridge Mathematical Library, Cambridge (1993).

    Google Scholar 

  36. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23, 298–305 (1973).

    MathSciNet  Google Scholar 

  37. Anderson, W.N., Morley, T.D.: Eigenvalues of the Laplacian of a Graph. Linear and Multilinear Algebra 18, 141–145 (1985) (Widely circulated in preprint form as University of Maryland technical report TR-71-45, October 1971).

    Google Scholar 

  38. Merris, R.: A note on Laplacian graph eigenvalues. Linear Algebra and its Applications 285, 33–35 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  39. Rojo, O., Sojo, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenvalues. Linear Algebra and its Applications 312, 155–159 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, J., Pan, Y.: A note on the second largest eigenvalue of the Laplacian matrix of a graph. Linear and Multilinear Algebra 48, 117–121 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  41. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra and its Applications 197/198 143–167 (1994).

    Google Scholar 

  42. Duan, Z., Liu, C., Chen, G.: Network synchronizability analysis: The theory of subgraphs and complementary graphs. Physica D 237, 1006–1012 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: Robustness and fragility. IEEE Trans. on Circ. Syst.-I 49, 54–62 (2002).

    Article  Google Scholar 

  44. Wang, X.F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. of Bifur. Chaos 12, 187–192 (2002).

    Article  Google Scholar 

  45. Erdös, P., Rényi, A.: On the evolution of random graphs. Pul. Math. inst. Hung. Acad. Sci. 5, 17–60 (1960).

    MATH  Google Scholar 

  46. Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263, 341–346 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  47. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  MathSciNet  Google Scholar 

  48. Jalan, S., Bandyopadhyay, J.N.: Random matrix analysis of network Laplacians. Physica A 387, 667–674 (2008).

    Article  Google Scholar 

  49. Zhan, C., Chen, G., Yeung, L.F.: On the distributions of Laplacian eigenvalues versus node degrees in complex networks. Physica A 389 1779–1788 (2010).

    Article  Google Scholar 

  50. Acebrón, J.A., Bonilla, L.L., Pérez-Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Article  Google Scholar 

  51. Brede, M.: Local vs. global synchronization in networks of non-identical Kuramoto oscillators. European Phys. J. B 62 87–94 (2008).

    Google Scholar 

  52. Lu, W.L., Liu, B., Chen, T.P.: Cluster synchronization in networks of coupled non-identical dynamical systems. Chaos 20 013120 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Chinese National Natural Science Foundation (Grant Nos. 11172215, 60804039 and 60974081), in part by the National Basic Research 973 Program of China under Grant No. 2007CB310805, and in part by the Hong Kong Research Grants Council (Grants NSFC-HK N-CityU107/07 and GRF1117/10E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanrong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, J., Lu, Ja., Zhan, C., Chen, G. (2012). Laplacian Spectra and Synchronization Processes on Complex Networks. In: Thai, M., Pardalos, P. (eds) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications(), vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0754-6_4

Download citation

Publish with us

Policies and ethics