Optimization in Designing Complex Communication Networks

  • Fernanda S. H. Souza
  • Geraldo R. Mateus
  • Alexandre Salles da Cunha
Part of the Springer Optimization and Its Applications book series (SOIA, volume 57)


Complex networks are found in real world in different areas of science, such as technological, social and biological. These networks are many times characterized by a non-trivial topology, with connection patterns among their elements that are neither purely regular nor purely random. The interesting features presented by this class of networks may be useful in improving the overall efficiency of engineered networks as computer, communication and transportation ones. There is a conjecture indicating that such complex topologies normally appear as a result of optimization processes. Optimization techniques have been applied to design complex communication networks, showing that features such as small path length, high clustering coefficient and power-law degree distribution can be achieved through optimization processes. In this chapter, models and algorithms based on optimization techniques to generate complex network topologies are discussed. We review some models, heuristics as well as exact solution approaches based on Integer Programing methods to generate topologies owning complex features.


Cluster Coefficient Scale Free Network Small World Small World Network Average Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grants 302276/2009-2 and 477863/2010-8 and by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) under grants 14016*1.


  1. 1.
    T. G. Lewis. Network Science: Theory and Applications. Wiley Publishing Hoboken, NJ, USA, 2009.Google Scholar
  2. 2.
    A-L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random networks: the topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281(1-4):69–77, June 2000.Google Scholar
  3. 3.
    R. Albert and A-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1):47–97, January 2002.Google Scholar
  4. 4.
    M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    D. J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton & Company, New York, NY, USA, 2003.Google Scholar
  6. 6.
    H.P. Thadakamalla, S. R. T. Kumara, and R. Albert. Complexity and Large-Scale Networks, volume 4 of Operations Research Series, chapter 11. CRC Press, Taylor and Francis Group, Pennsylvania State University, University Park, USA, 2008.Google Scholar
  7. 7.
    D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440–442, June 1998.CrossRefGoogle Scholar
  8. 8.
    M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, pages 251–262, New York, NY, USA, 1999. ACM.Google Scholar
  9. 9.
    H. P. Thadakamalla, U. N. Raghavan, S. Kumara, and R. Albert. Survivability of multiagent-based supply networks: A topological perspective. IEEE Intelligent Systems, 19:24–31, 2004.Google Scholar
  10. 10.
    R. Albert, H. Jeong, and A-L. Barabási. The diameter of the world wide web. Nature, 401:130, 1999.Google Scholar
  11. 11.
    David L. Alderson. Catching the ‘network science’ bug: Insight and opportunity for the operations researcher. Operations Research, 56(5):1047–1065, September-October 2008.Google Scholar
  12. 12.
    M. G.C. Resende and P. M. Pardalos, editors. Handbook of Optimization in Telecommunications. Springer, New York, NY, USA, 2005.Google Scholar
  13. 13.
    John W. Chinneck, Bjarni Kristjansson, and Matthew J. Saltzman. Operations Research and Cyber-Infrastructure. Springer Publishing Company, Incorporated, 1 edition, New York, NY, USA, 2009.Google Scholar
  14. 14.
    C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance. Branch-and-price: column generation for solving huge integer programs. Operations Research, 48:318–326, 1998.MathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems. Operations Research, 48:318–326, March 2000.CrossRefGoogle Scholar
  16. 16.
    Thomas A. Feo and Mauricio G.C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6:109–133, 1995.Google Scholar
  17. 17.
    L. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measurements. Advances In Physics, 56:167–242, 2007.CrossRefGoogle Scholar
  18. 18.
    M. E. J. Newman and D. J. Watts. Scaling and percolation in the small-world network model. Physical Review E, 60(6):7332–7342, December 1999.CrossRefGoogle Scholar
  19. 19.
    P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290–297, 1959.MathSciNetMATHGoogle Scholar
  20. 20.
    E.N. Gilbert. Random graphs. Annals of Mathematical Statistics, 30:1141–1144, 1959.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    S. Milgram. The small world problem. Psychology Today, 2:60–67, 1967.Google Scholar
  22. 22.
    J. M. Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, August 2000.CrossRefGoogle Scholar
  23. 23.
    D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302, 2002.CrossRefGoogle Scholar
  24. 24.
    A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. S. H. Souza, A. S. Cunha, and G. R Mateus. Optimal topology design of complex networks. In INFOCOM’09: Proceedings of the 28th IEEE International Conference on Computer Communications Workshops, pages 278–283, Piscataway, NJ, USA, 2009. IEEE Press.Google Scholar
  26. 26.
    F. S. H. Souza, A. S. Cunha, and G. R Mateus. On the design of complex networks through a branch-and-price algorithm. In IEEE GLOBECOM Workshop on Complex and Communication Networks, 2010.Google Scholar
  27. 27.
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms and Applications. Prentice Hall, USA, 1993.MATHGoogle Scholar
  28. 28.
    L. Wolsey. Integer Programming. John Wiley and Sons, New York, NY, USA, 1998.MATHGoogle Scholar
  29. 29.
    G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, USA, 1963.MATHGoogle Scholar
  30. 30.
    IBM ILOG. CPLEX Optimizer., [Online; accessed 08-Oct-2010].
  31. 31.
    L. S. Lasdon. Optimization Theory for Large Scale Systems. McMillan Company, New York, USA, 1970.Google Scholar
  32. 32.
    J. Desrosiers and W.E. Lübbecke. A primer in column generation. In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, pages 1–32. Springer US, New York, NY, USA, 2005.CrossRefGoogle Scholar
  33. 33.
    D. Huisman, R. Jans, M. Peeters, and A. P.M. Wagelmans. Combining column generation and lagrangian relaxation. In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, pages 247–270. Springer US, New York, NY, USA, 2005.CrossRefGoogle Scholar
  34. 34.
    D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 44(3):216–229, 2004.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, pages 33–65. Springer US, New York, NY, USA, 2005.CrossRefGoogle Scholar
  36. 36.
    F. Vanderbeck. Branching in branch-and-price: a generic scheme. Mathematical Programming, Springer Berlin/Heidelberg, Berlin, Germany, pages 1–46, 2010. 10.1007/s10107-009-0334-1.Google Scholar
  37. 37.
    T. Koch, A. Martin, and T. Achterberg. Branching rules revisited. Operations Research Letters, 33:42–54, 2004.MathSciNetGoogle Scholar
  38. 38.
    M. Parker and J. Ryan. A column generation algorithm for bandwidth packing. Telecommunications Systems, 2:185–195, 1994.CrossRefGoogle Scholar
  39. 39.
    R. Albert, H. Jeong, and A-L. Barabási. The internet’s achilles’ heel: Error and attack tolerance of complex networks. Nature, 406:378–382, 2000.Google Scholar
  40. 40.
    R. Albert, I. Albert, and G.L. Nakarado. Structural vulnerability of the north american power grid. Physical Review E, 69(2), 2004.Google Scholar
  41. 41.
    T.F. Gonzalez, editor. Handbook of Approximation Algorithms and Metaheuristics (Chapman & Hall/CRC Computer & Information Science Series). Chapman and Hall/CRC, Boca Raton, FL, USA, 1 edition, May 2007.Google Scholar
  42. 42.
    E-G. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing, Hoboken, NJ, USA, 2009.Google Scholar
  43. 43.
    S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    N. Mathias and V. Gopal. Small worlds: How and why. Physics Review E, 63(2):021117, January 2001.Google Scholar
  45. 45.
    R. F. i Cancho and R. V. Sole. Optimization in complex networks. Working Papers 01-11-068, Santa Fe Institute, November 2001.Google Scholar
  46. 46.
    F. S. H. Souza, D.L. Guidoni, and A.A.F. Loureiro. Uma abordagem baseada em grasp para geração de topologias small world. In XL Simpósio Brasileiro de Pesquisa Operacional, SOBRAPO, João Pessoa, Brazil, 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fernanda S. H. Souza
    • 1
  • Geraldo R. Mateus
    • 1
  • Alexandre Salles da Cunha
    • 1
  1. 1.Department of Computer ScienceFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations