Skip to main content

Protein Kinase D Signaling in Cancer

  • Chapter
  • First Online:

Abstract

Protein Kinase D is a serine/threonine kinase that shows responsiveness to phorbol esters and diacylglycerol and is a direct target for Src family kinases, RhoGTPases and protein kinase C. Thus PKD on first view represents a bona fide oncogene and is currently investigated for its potential as a drug target for multiple cancers. This is supported by the discovery that PKD promotes tumor cell survival in response to damaging stresses such as increases in reactive oxygen species, but also enhances cell proliferation and DNA synthesis in response to activation by growth factor and G-protein-coupled receptors. Based on these findings, the development of PKD inhibitors is progressed within the field. However, accumulating reports also suggest that PKD activation suppresses directed cell migration and invasion, suggesting that PKD expression may be needed for early tumorigenic events, but is downregulated during metastatic progression. This chapter describes the known roles of PKD isoenzymes in all aspects of tumor biology as well as the signaling mechanisms they use, and discusses their potential value as drug targets in cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sturany, S., et al., Molecular cloning and characterization of the human protein kinase D2. A novel member of the protein kinase D family of serine threonine kinases. J Biol Chem, 2001. 276(5): p. 3310–8.

    PubMed  CAS  Google Scholar 

  2. Johannes, F.J., et al., PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem, 1994. 269(8): p. 6140–8.

    PubMed  CAS  Google Scholar 

  3. Hayashi, A., et al., PKCnu, a new member of the protein kinase C family, composes a fourth subfamily with PKCmu. Biochim Biophys Acta, 1999. 1450(1): p. 99–106.

    PubMed  CAS  Google Scholar 

  4. Valverde, A.M., et al., Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci USA, 1994. 91(18): p. 8572–6.

    PubMed  CAS  Google Scholar 

  5. Manning, G., et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912–34.

    PubMed  CAS  Google Scholar 

  6. Dieterich, S., et al., In vitro activation and substrates of recombinant, baculovirus expressed human protein kinase C mu. FEBS Lett, 1996. 381(3): p. 183–7.

    PubMed  CAS  Google Scholar 

  7. Eiseler, T., et al., Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res, 2009. 11(1): p. R13.

    PubMed  Google Scholar 

  8. Kim, M., et al., Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis, 2008. 29(3): p. 629–37.

    PubMed  CAS  Google Scholar 

  9. Iglesias, T. and E. Rozengurt, Protein kinase D activation by mutations within its pleckstrin homology domain. J Biol Chem, 1998. 273(1): p. 410–6.

    PubMed  CAS  Google Scholar 

  10. Iglesias, T. and E. Rozengurt, Protein kinase D activation by deletion of its cysteine-rich motifs. FEBS Lett, 1999. 454(1–2): p. 53–6.

    PubMed  CAS  Google Scholar 

  11. Waldron, R.T. and E. Rozengurt, Protein kinase C phosphorylates protein kinase D activation loop Ser744 and Ser748 and releases autoinhibition by the pleckstrin homology domain. J Biol Chem, 2003. 278(1): p. 154–63.

    PubMed  CAS  Google Scholar 

  12. Storz, P., et al., Tyrosine phosphorylation of protein kinase D in the pleckstrin homology domain leads to activation. J Biol Chem, 2003. 278(20): p. 17969–76.

    PubMed  CAS  Google Scholar 

  13. Cowell, C.F., et al., Mitochondrial diacylglycerol initiates protein-kinase D1-mediated ROS signaling. J Cell Sci, 2009. 122(Pt 7): p. 919–28.

    PubMed  CAS  Google Scholar 

  14. Yuan, J., L.W. Slice, and E. Rozengurt, Activation of protein kinase D by signaling through Rho and the alpha subunit of the heterotrimeric G protein G13. J Biol Chem, 2001. 276(42): p. 38619–27.

    PubMed  CAS  Google Scholar 

  15. Oancea, E., et al., Mechanism of persistent protein kinase D1 translocation and activation. Dev Cell, 2003. 4(4): p. 561–74.

    PubMed  CAS  Google Scholar 

  16. Baron, C.L. and V. Malhotra, Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science, 2002. 295(5553): p. 325–8.

    PubMed  CAS  Google Scholar 

  17. Maeda, Y., et al., Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. Embo J, 2001. 20(21): p. 5982–90.

    PubMed  CAS  Google Scholar 

  18. Rey, O., et al., Regulated nucleocytoplasmic transport of protein kinase D in response to G protein-coupled receptor activation. J Biol Chem, 2001. 276(52): p. 49228–35.

    PubMed  CAS  Google Scholar 

  19. Waldron, R.T., T. Iglesias, and E. Rozengurt, The pleckstrin homology domain of protein kinase D interacts preferentially with the eta isoform of protein kinase C. J Biol Chem, 1999. 274(14): p. 9224–30.

    PubMed  CAS  Google Scholar 

  20. Jamora, C., et al., Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell, 1999. 98(1): p. 59–68.

    PubMed  CAS  Google Scholar 

  21. Van Lint, J., et al., Protein kinase D: an intracellular traffic regulator on the move. Trends Cell Biol, 2002. 12(4): p. 193–200.

    PubMed  Google Scholar 

  22. Wang, Q.J., PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci, 2006. 27(6): p. 317–23.

    PubMed  CAS  Google Scholar 

  23. Eiseler, T., et al., PKD is recruited to sites of actin remodelling at the leading edge and negatively regulates cell migration. FEBS Lett, 2007. 581(22): p. 4279–87.

    PubMed  CAS  Google Scholar 

  24. Cowell, C.F., et al., Loss of cell-cell contacts induces NF-kappaB via RhoA-mediated activation of protein kinase D1. J Cell Biochem, 2009. 106(4): p. 714–28.

    PubMed  CAS  Google Scholar 

  25. Eiseler, T., et al., Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol, 2009. 11(5): p. 545–56.

    PubMed  CAS  Google Scholar 

  26. Hutti, J.E., et al., A rapid method for determining protein kinase phosphorylation specificity. Nat Methods, 2004. 1(1): p. 27–9.

    PubMed  CAS  Google Scholar 

  27. Doppler, H., et al., A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D. J Biol Chem, 2005. 280(15): p. 15013–9.

    PubMed  Google Scholar 

  28. Chen, J., et al., Protein kinase D3 (PKD3) contributes to prostate cancer cell growth and survival through a PKCepsilon/PKD3 pathway downstream of Akt and ERK 1/2. Cancer Res, 2008. 68(10): p. 3844–53.

    PubMed  CAS  Google Scholar 

  29. Chen, J., G. Lu, and Q.J. Wang, Protein kinase C-independent effects of protein kinase D3 in glucose transport in L6 myotubes. Mol Pharmacol, 2005. 67(1): p. 152–62.

    PubMed  CAS  Google Scholar 

  30. Sharlow, E.R., et al., Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J Biol Chem, 2008. 283(48): p. 33516–26.

    PubMed  CAS  Google Scholar 

  31. Peterburs, P., et al., Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res, 2009. 69(14): p. 5634–8.

    PubMed  CAS  Google Scholar 

  32. Wang, Q.J., et al., Ligand structure-activity requirements and phospholipid dependence for the binding of phorbol esters to protein kinase D. Mol Pharmacol, 2003. 64(6): p. 1342–8.

    PubMed  CAS  Google Scholar 

  33. Yang, C. and M.G. Kazanietz, Divergence and complexities in DAG signaling: looking beyond PKC. Trends Pharmacol Sci, 2003. 24(11): p. 602–8.

    PubMed  CAS  Google Scholar 

  34. Paolucci, L. and E. Rozengurt, Protein kinase D in small cell lung cancer cells: rapid activation through protein kinase C. Cancer Res, 1999. 59(3): p. 572–7.

    PubMed  CAS  Google Scholar 

  35. Iglesias, T., S. Matthews, and E. Rozengurt, Dissimilar phorbol ester binding properties of the individual cysteine-rich motifs of protein kinase D. FEBS Lett, 1998. 437(1–2): p. 19–23.

    PubMed  CAS  Google Scholar 

  36. Zugaza, J.L., et al., Bombesin, vasopressin, endothelin, bradykinin, and platelet-derived growth factor rapidly activate protein kinase D through a protein kinase C-dependent signal transduction pathway. J Biol Chem, 1997. 272(38): p. 23952–60.

    PubMed  CAS  Google Scholar 

  37. Van Lint, J., et al., Platelet-derived growth factor stimulates protein kinase D through the activation of phospholipase Cgamma and protein kinase C. J Biol Chem, 1998. 273(12): p. 7038–43.

    PubMed  Google Scholar 

  38. Storz, P. and A. Toker, Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. Embo J, 2003. 22(1): p. 109–20.

    PubMed  CAS  Google Scholar 

  39. Bagowski, C.P., et al., Cell-type specific phosphorylation of threonines T654 and T669 by PKD defines the signal capacity of the EGF receptor. Embo J, 1999. 18(20): p. 5567–76.

    PubMed  CAS  Google Scholar 

  40. Yuan, J., et al., Activation of protein kinase D by signaling through the alpha subunit of the heterotrimeric G protein G(q). J Biol Chem, 2000. 275(3): p. 2157–64.

    PubMed  CAS  Google Scholar 

  41. Yuan, J., et al., Cooperation of Gq, Gi, and G12/13 in protein kinase D activation and phosphorylation induced by lysophosphatidic acid. J Biol Chem, 2003. 278(7): p. 4882–91.

    PubMed  CAS  Google Scholar 

  42. Yuan, J., O. Rey, and E. Rozengurt, Activation of protein kinase D3 by signaling through Rac and the alpha subunits of the heterotrimeric G proteins G12 and G13. Cell Signal, 2006. 18(7): p. 1051–62.

    PubMed  CAS  Google Scholar 

  43. Yuan, J., O. Rey, and E. Rozengurt, Protein kinase D3 activation and phosphorylation by signaling through G alpha q. Biochem Biophys Res Commun, 2005. 335(2): p. 270–6.

    PubMed  CAS  Google Scholar 

  44. Chiu, T. and E. Rozengurt, PKD in intestinal epithelial cells: rapid activation by phorbol esters, LPA, and angiotensin through PKC. Am J Physiol Cell Physiol, 2001. 280(4): p. C929-42.

    PubMed  CAS  Google Scholar 

  45. Rey, O., et al., G protein-coupled receptor-mediated phosphorylation of the activation loop of protein kinase D: dependence on plasma membrane translocation and protein kinase Cepsilon. J Biol Chem, 2004. 279(33): p. 34361–72.

    PubMed  CAS  Google Scholar 

  46. Kam, Y. and J.H. Exton, Role of phospholipase D in the activation of protein kinase D by lysophosphatidic acid. Biochem Biophys Res Commun, 2004. 315(1): p. 139–43.

    PubMed  CAS  Google Scholar 

  47. Chiu, T.T., et al., Protein kinase D2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-kappaB. Am J Physiol Cell Physiol, 2007. 292(2): p. C767–77.

    PubMed  CAS  Google Scholar 

  48. Rozengurt, E. and J.H. Walsh, Gastrin, CCK, signaling, and cancer. Annu Rev Physiol, 2001. 63: p. 49–76.

    PubMed  CAS  Google Scholar 

  49. Sturany, S., et al., Mechanism of activation of protein kinase D2(PKD2) by the CCK(B)/gastrin receptor. J Biol Chem, 2002. 277(33): p. 29431–6.

    PubMed  CAS  Google Scholar 

  50. Hall, A., Rho GTPases and the actin cytoskeleton. Science, 1998. 279(5350): p. 509–14.

    PubMed  CAS  Google Scholar 

  51. Hart, M.J., et al., Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science, 1998. 280(5372): p. 2112–4.

    PubMed  CAS  Google Scholar 

  52. Kozasa, T., et al., p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science, 1998. 280(5372): p. 2109–11.

    PubMed  CAS  Google Scholar 

  53. Halliwell, B., Oxidative stress and cancer: have we moved forward? Biochem J, 2007. 401(1): p. 1–11.

    PubMed  CAS  Google Scholar 

  54. Storz, P., Reactive oxygen species in tumor progression. Front Biosci, 2005. 10: p. 1881–96.

    PubMed  CAS  Google Scholar 

  55. Storz, P., Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci STKE, 2006. 2006(332): p. re3.

    PubMed  Google Scholar 

  56. Storz, P., H. Doppler, and A. Toker, Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol, 2004. 24(7): p. 2614–26.

    PubMed  CAS  Google Scholar 

  57. Storz, P., H. Doppler, and A. Toker, Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor kappaB. Mol Pharmacol, 2004. 66(4): p. 870–9.

    PubMed  CAS  Google Scholar 

  58. Storz, P., H. Doppler, and A. Toker, Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol Cell Biol, 2005. 25(19): p. 8520–30.

    PubMed  CAS  Google Scholar 

  59. Chiarugi, P. and T. Fiaschi, Redox signalling in anchorage-dependent cell growth. Cell Signal, 2007. 19(4): p. 672–82.

    PubMed  CAS  Google Scholar 

  60. Rey, O., et al., Protein kinase C nu/protein kinase D3 nuclear localization, catalytic activation, and intracellular redistribution in response to G protein-coupled receptor agonists. J Biol Chem, 2003. 278(26): p. 23773–85.

    PubMed  CAS  Google Scholar 

  61. Babior, B.M., The respiratory burst oxidase. Curr Opin Hematol, 1995. 2(1): p. 55–60.

    PubMed  CAS  Google Scholar 

  62. Segal, A.W. and K.P. Shatwell, The NADPH oxidase of phagocytic leukocytes. Ann N Y Acad Sci, 1997. 832: p. 215–22.

    PubMed  CAS  Google Scholar 

  63. Vantus, T., et al., Doxorubicin-induced activation of protein kinase D1 through caspase-mediated proteolytic cleavage: identification of two cleavage sites by microsequencing. Cell Signal, 2004. 16(6): p. 703–9.

    PubMed  CAS  Google Scholar 

  64. Endo, K., et al., Proteolytic cleavage and activation of protein kinase C [micro] by caspase-3 in the apoptotic response of cells to 1-beta -D-arabinofuranosylcytosine and other genotoxic agents. J Biol Chem, 2000. 275(24): p. 18476–81.

    PubMed  CAS  Google Scholar 

  65. Haussermann, S., et al., Proteolytic cleavage of protein kinase Cmu upon induction of apoptosis in U937 cells. FEBS Lett, 1999. 462(3): p. 442–6.

    PubMed  CAS  Google Scholar 

  66. Waldron, R.T., T. Iglesias, and E. Rozengurt, Phosphorylation-dependent protein kinase D activation. Electrophoresis, 1999. 20(2): p. 382–90.

    PubMed  CAS  Google Scholar 

  67. Yuan, J., et al., Protein kinase D is a downstream target of protein kinase Ctheta. Biochem Biophys Res Commun, 2002. 291(3): p. 444–52.

    PubMed  CAS  Google Scholar 

  68. Brandlin, I., et al., Protein kinase C(mu) regulation of the JNK pathway is triggered via phosphoinositide-dependent kinase 1 and protein kinase C(epsilon). J Biol Chem, 2002. 277(47): p. 45451–7.

    PubMed  CAS  Google Scholar 

  69. Doppler, H. and P. Storz, A novel tyrosine phosphorylation site in protein kinase D contributes to oxidative stress-mediated activation. J Biol Chem, 2007. 282(44): p. 31873–81.

    PubMed  Google Scholar 

  70. Brandlin, I., et al., Protein kinase C (PKC)eta-mediated PKC mu activation modulates ERK and JNK signal pathways. J Biol Chem, 2002. 277(8): p. 6490–6.

    PubMed  CAS  Google Scholar 

  71. Tan, M., et al., Thrombin rapidly induces protein kinase D phosphorylation, and protein kinase C delta mediates the activation. J Biol Chem, 2003. 278(5): p. 2824–8.

    PubMed  CAS  Google Scholar 

  72. Iglesias, T., R.T. Waldron, and E. Rozengurt, Identification of in vivo phosphorylation sites required for protein kinase D activation. J Biol Chem, 1998. 273(42): p. 27662–7.

    PubMed  CAS  Google Scholar 

  73. Johnson, L.N., M.E. Noble, and D.J. Owen, Active and inactive protein kinases: structural basis for regulation. Cell, 1996. 85(2): p. 149–58.

    PubMed  CAS  Google Scholar 

  74. Mihailovic, T., et al., Protein kinase D2 mediates activation of nuclear factor kappaB by Bcr-Abl in Bcr-Abl  +  human myeloid leukemia cells. Cancer Res, 2004. 64(24): p. 8939–44.

    PubMed  CAS  Google Scholar 

  75. Rhee, S.G., et al., Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE, 2000. 2000(53): p. pe1.

    PubMed  CAS  Google Scholar 

  76. Meng, T.C., T. Fukada, and N.K. Tonks, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell, 2002. 9(2): p. 387–99.

    PubMed  CAS  Google Scholar 

  77. Vertommen, D., et al., Regulation of protein kinase D by multisite phosphorylation. Identification of phosphorylation sites by mass spectrometry and characterization by site-directed mutagenesis. J Biol Chem, 2000. 275(26): p. 19567–76.

    CAS  Google Scholar 

  78. Hausser, A., et al., Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins. J Biol Chem, 1999. 274(14): p. 9258–64.

    PubMed  CAS  Google Scholar 

  79. Matthews, S.A., E. Rozengurt, and D. Cantrell, Characterization of serine 916 as an in vivo autophosphorylation site for protein kinase D/Protein kinase Cmu. J Biol Chem, 1999. 274(37): p. 26543–9.

    PubMed  CAS  Google Scholar 

  80. Sanchez-Ruiloba, L., et al., Protein kinase D intracellular localization and activity control kinase D-interacting substrate of 220-kDa traffic through a postsynaptic density-95/discs large/zonula occludens-1-binding motif. J Biol Chem, 2006. 281(27): p. 18888–900.

    PubMed  CAS  Google Scholar 

  81. Rybin, V.O., J. Guo, and S.F. Steinberg, Protein kinase D1 autophosphorylation via distinct mechanisms at Ser744/Ser748 and Ser916. J Biol Chem, 2009. 284(4): p. 2332–43.

    PubMed  CAS  Google Scholar 

  82. Li, J., et al., PKD1, PKD2, and their substrate Kidins220 regulate neurotensin secretion in the BON human endocrine cell line. J Biol Chem, 2008. 283(5): p. 2614–21.

    PubMed  CAS  Google Scholar 

  83. White, D.P., P.T. Caswell, and J.C. Norman, alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol, 2007. 177(3): p. 515–25.

    PubMed  CAS  Google Scholar 

  84. Eisenberg-Lerner, A. and A. Kimchi, DAP kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Differ, 2007. 14(11): p. 1908–15.

    PubMed  CAS  Google Scholar 

  85. Rennecke, J., et al., Protein-kinase-Cmu expression correlates with enhanced keratinocyte proliferation in normal and neoplastic mouse epidermis and in cell culture. Int J Cancer, 1999. 80(1): p. 98–103.

    PubMed  CAS  Google Scholar 

  86. Trauzold, A., et al., PKCmu prevents CD95-mediated apoptosis and enhances proliferation in pancreatic tumour cells. Oncogene, 2003. 22(55): p. 8939–47.

    PubMed  CAS  Google Scholar 

  87. Woodside, K.J., C.M. Townsend, Jr., and B. Mark Evers, Current management of gastrointestinal carcinoid tumors. J Gastrointest Surg, 2004. 8(6): p. 742–56.

    PubMed  Google Scholar 

  88. Jackson, L.N., et al., Overexpression of wild-type PKD2 leads to increased proliferation and invasion of BON endocrine cells. Biochem Biophys Res Commun, 2006. 348(3): p. 945–9.

    PubMed  CAS  Google Scholar 

  89. Romero, D.G., et al., Angiotensin II-mediated protein kinase D activation stimulates aldosterone and cortisol secretion in H295R human adrenocortical cells. Endocrinology, 2006. 147(12): p. 6046–55.

    PubMed  CAS  Google Scholar 

  90. Rozengurt, E., Early signals in the mitogenic response. Science, 1986. 234(4773): p. 161–6.

    PubMed  CAS  Google Scholar 

  91. Guha, S., O. Rey, and E. Rozengurt, Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Res, 2002. 62(6): p. 1632–40.

    PubMed  CAS  Google Scholar 

  92. Rey, O., et al., Rapid protein kinase D translocation in response to G protein-coupled receptor activation. Dependence on protein kinase C. J Biol Chem, 2001. 276(35): p. 32616–26.

    PubMed  CAS  Google Scholar 

  93. Haberland, M., R.L. Montgomery, and E.N. Olson, The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet, 2009. 10(1): p. 32–42.

    PubMed  CAS  Google Scholar 

  94. Xu, X., et al., Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler Thromb Vasc Biol, 2007. 27(11): p. 2355–62.

    PubMed  CAS  Google Scholar 

  95. Vega, R.B., et al., Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol, 2004. 24(19): p. 8374–85.

    PubMed  CAS  Google Scholar 

  96. Matthews, S.A., et al., Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol, 2006. 26(4): p. 1569–77.

    PubMed  CAS  Google Scholar 

  97. Huynh, Q.K. and T.A. McKinsey, Protein kinase D directly phosphorylates histone deacetylase 5 via a random sequential kinetic mechanism. Arch Biochem Biophys, 2006. 450(2): p. 141–8.

    PubMed  CAS  Google Scholar 

  98. Carnegie, G.K., et al., AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell, 2008. 32(2): p. 169–79.

    PubMed  CAS  Google Scholar 

  99. Kisfalvi, K., S. Guha, and E. Rozengurt, Neurotensin and EGF induce synergistic stimulation of DNA synthesis by increasing the duration of ERK signaling in ductal pancreatic cancer cells. J Cell Physiol, 2005. 202(3): p. 880–90.

    PubMed  CAS  Google Scholar 

  100. Sinnett-Smith, J., et al., Protein kinase D2 potentiates MEK/ERK/RSK signaling, c-Fos accumulation and DNA synthesis induced by bombesin in Swiss 3 T3 cells. J Cell Physiol, 2007. 211(3): p. 781–90.

    PubMed  CAS  Google Scholar 

  101. Sinnett-Smith, J., et al., Protein kinase D potentiates DNA synthesis induced by Gq-coupled receptors by increasing the duration of ERK signaling in Swiss 3 T3 cells. J Biol Chem, 2004. 279(16): p. 16883–93.

    PubMed  CAS  Google Scholar 

  102. Hausser, A., et al., Protein kinase C mu selectively activates the mitogen-activated protein kinase (MAPK) p42 pathway. FEBS Lett, 2001. 492(1–2): p. 39–44.

    PubMed  CAS  Google Scholar 

  103. Perez-Mancera, P.A. and D.A. Tuveson, Physiological analysis of oncogenic K-ras. Methods Enzymol, 2006. 407: p. 676–90.

    PubMed  CAS  Google Scholar 

  104. Wang, Y., et al., The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol Cell Biol, 2002. 22(3): p. 916–26.

    PubMed  CAS  Google Scholar 

  105. Okada, T., et al., Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis. J Biol Chem, 2005. 280(43): p. 36318–25.

    PubMed  CAS  Google Scholar 

  106. Igarashi, N., et al., Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem, 2003. 278(47): p. 46832–9.

    PubMed  CAS  Google Scholar 

  107. Ding, G., et al., Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J Biol Chem, 2007. 282(37): p. 27493–502.

    PubMed  CAS  Google Scholar 

  108. Spiegel, S. and S. Milstien, Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem, 2002. 277(29): p. 25851–4.

    PubMed  CAS  Google Scholar 

  109. Nava, V.E., et al., Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp Cell Res, 2002. 281(1): p. 115–27.

    PubMed  CAS  Google Scholar 

  110. Olivera, A., et al., Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol, 1999. 147(3): p. 545–58.

    PubMed  CAS  Google Scholar 

  111. Olivera, A., et al., Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. J Biol Chem, 2003. 278(47): p. 46452–60.

    PubMed  CAS  Google Scholar 

  112. Xia, P., et al., An oncogenic role of sphingosine kinase. Curr Biol, 2000. 10(23): p. 1527–30.

    PubMed  CAS  Google Scholar 

  113. Besirli, C.G. and E.M. Johnson, Jr., The activation loop phosphorylation of protein kinase D is an early marker of neuronal DNA damage. J Neurochem, 2006. 99(1): p. 218–25.

    PubMed  CAS  Google Scholar 

  114. Johannes, F.J., et al., Protein kinase Cmu downregulation of tumor-necrosis-factor-induced apoptosis correlates with enhanced expression of nuclear-factor-kappaB-dependent protective genes. Eur J Biochem, 1998. 257(1): p. 47–54.

    PubMed  CAS  Google Scholar 

  115. Storz, P., et al., Functional dichotomy of A20 in apoptotic and necrotic cell death. Biochem J, 2005. 387(Pt 1): p. 47–55.

    PubMed  CAS  Google Scholar 

  116. Toker, A., Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol Pharmacol, 2000. 57(4): p. 652–8.

    PubMed  CAS  Google Scholar 

  117. Toker, A. and M. Yoeli-Lerner, Akt signaling and cancer: surviving but not moving on. Cancer Res, 2006. 66(8): p. 3963–6.

    PubMed  CAS  Google Scholar 

  118. Brunet, A., et al., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999. 96(6): p. 857–68.

    PubMed  CAS  Google Scholar 

  119. Franke, T.F. and L.C. Cantley, Apoptosis. A Bad kinase makes good. Nature, 1997. 390(6656): p. 116–7.

    PubMed  CAS  Google Scholar 

  120. Datta, S.R., A. Brunet, and M.E. Greenberg, Cellular survival: a play in three Akts. Genes Dev, 1999. 13(22): p. 2905–27.

    PubMed  CAS  Google Scholar 

  121. Storz, P., Mitochondrial ROS--radical detoxification, mediated by protein kinase D. Trends Cell Biol, 2007. 17(1): p. 13–8.

    PubMed  CAS  Google Scholar 

  122. Wang, Y., et al., Hepatocyte resistance to oxidative stress is dependent on protein kinase C-mediated down-regulation of c-Jun/AP-1. J Biol Chem, 2004. 279(30): p. 31089–97.

    PubMed  CAS  Google Scholar 

  123. Hurd, C., R.T. Waldron, and E. Rozengurt, Protein kinase D complexes with C-Jun N-terminal kinase via activation loop phosphorylation and phosphorylates the C-Jun N-terminus. Oncogene, 2002. 21(14): p. 2154–60.

    PubMed  CAS  Google Scholar 

  124. Hurd, C. and E. Rozengurt, Uncoupling of protein kinase D from suppression of EGF-dependent c-Jun phosphorylation in cancer cells. Biochem Biophys Res Commun, 2003. 302(4): p. 800–4.

    PubMed  CAS  Google Scholar 

  125. Waldron, R.T., et al., Identification of a novel phosphorylation site in c-Jun directly targeted in vitro by protein kinase D. Biochem Biophys Res Commun, 2007. 356(2): p. 361–7.

    PubMed  CAS  Google Scholar 

  126. Zhang, W., et al., Protein kinase D specifically mediates apoptosis signal-regulating kinase 1-JNK signaling induced by H2O2 but not tumor necrosis factor. J Biol Chem, 2005. 280(19): p. 19036–44.

    PubMed  CAS  Google Scholar 

  127. MacKeigan, J.P., L.O. Murphy, and J. Blenis, Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol, 2005. 7(6): p. 591–600.

    PubMed  CAS  Google Scholar 

  128. Kops, G.J., et al., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 2002. 419(6904): p. 316–21.

    PubMed  CAS  Google Scholar 

  129. Mercurio, F. and A.M. Manning, NF-kappaB as a primary regulator of the stress response. Oncogene, 1999. 18(45): p. 6163–71.

    PubMed  CAS  Google Scholar 

  130. Li, N. and M. Karin, Is NF-kappaB the sensor of oxidative stress? Faseb J, 1999. 13(10): p. 1137–43.

    PubMed  CAS  Google Scholar 

  131. Das, K.C., Y. Lewis-Molock, and C.W. White, Activation of NF-kappa B and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am J Physiol, 1995. 269(5 Pt 1): p. L588-602.

    PubMed  CAS  Google Scholar 

  132. Guo, G., et al., Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol, 2003. 23(7): p. 2362–78.

    PubMed  CAS  Google Scholar 

  133. Rojo, A.I., et al., Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci, 2004. 24(33): p. 7324–34.

    PubMed  CAS  Google Scholar 

  134. Olmos, Y., et al., Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. J Biol Chem, 2009. 284(21): p. 14476–84.

    PubMed  CAS  Google Scholar 

  135. Huang, Z., et al., Effects of 5-fluouracil combined with sulfasalazine on human pancreatic carcinoma cell line BxPC-3 proliferation and apoptosis in vitro. Hepatobiliary Pancreat Dis Int, 2007. 6(3): p. 312–20.

    PubMed  CAS  Google Scholar 

  136. Sun, C., et al., Aurora kinase inhibition downregulates NF-kappaB and sensitises tumour cells to chemotherapeutic agents. Biochem Biophys Res Commun, 2007. 352(1): p. 220–5.

    PubMed  CAS  Google Scholar 

  137. Rao, P.S., et al., Metallothionein 2A interacts with the kinase domain of PKCmu in prostate cancer. Biochem Biophys Res Commun, 2003. 310(3): p. 1032–8.

    PubMed  CAS  Google Scholar 

  138. Abdel-Mageed, A.B. and K.C. Agrawal, Activation of nuclear factor kappaB: potential role in metallothionein-mediated mitogenic response. Cancer Res, 1998. 58(11): p. 2335–8.

    PubMed  CAS  Google Scholar 

  139. Vasak, M. and D.W. Hasler, Metallothioneins: new functional and structural insights. Curr Opin Chem Biol, 2000. 4(2): p. 177–83.

    PubMed  CAS  Google Scholar 

  140. Mori-Iwamoto, S., et al., Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol, 2007. 31(6): p. 1345–50.

    PubMed  CAS  Google Scholar 

  141. Landry, J., et al., Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem, 1992. 267(2): p. 794–803.

    PubMed  CAS  Google Scholar 

  142. Lambert, H., et al., HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem, 1999. 274(14): p. 9378–85.

    PubMed  CAS  Google Scholar 

  143. Yuan, J. and E. Rozengurt, PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. J Cell Biochem, 2008. 103(2): p. 648–62.

    PubMed  CAS  Google Scholar 

  144. Rogalla, T., et al., Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem, 1999. 274(27): p. 18947–56.

    PubMed  CAS  Google Scholar 

  145. Jaggi, M., et al., Bryostatin 1 modulates beta-catenin subcellular localization and transcription activity through protein kinase D1 activation. Mol Cancer Ther, 2008. 7(9): p. 2703–12.

    PubMed  CAS  Google Scholar 

  146. Medeiros, R.B., et al., Protein kinase D1 and the beta 1 integrin cytoplasmic domain control beta 1 integrin function via regulation of Rap1 activation. Immunity, 2005. 23(2): p. 213–26.

    PubMed  CAS  Google Scholar 

  147. Lickert, H., et al., Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem, 2000. 275(7): p. 5090–5.

    PubMed  CAS  Google Scholar 

  148. Serres, M., et al., The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp Cell Res, 2000. 257(2): p. 255–64.

    PubMed  CAS  Google Scholar 

  149. Jaggi, M., et al., E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Res, 2005. 65(2): p. 483–92.

    PubMed  CAS  Google Scholar 

  150. Jaggi, M., et al., Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun, 2003. 307(2): p. 254–60.

    PubMed  CAS  Google Scholar 

  151. Syed, V., et al., Beta-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. J Cell Biochem, 2008. 104(1): p. 82–95.

    PubMed  CAS  Google Scholar 

  152. Du, C., et al., Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin. Cancer Res, 2009. 69(3): p. 1117–24.

    PubMed  CAS  Google Scholar 

  153. Vihinen, P., et al., Integrin alpha 2 beta 1 in tumorigenic human osteosarcoma cell lines regulates cell adhesion, migration, and invasion by interaction with type I collagen. Cell Growth Differ, 1996. 7(4): p. 439–47.

    PubMed  CAS  Google Scholar 

  154. Palmantier, R., et al., Cis-polyunsaturated fatty acids stimulate beta1 integrin-mediated adhesion of human breast carcinoma cells to type IV collagen by activating protein kinases C-epsilon and -mu. Cancer Res, 2001. 61(6): p. 2445–52.

    PubMed  CAS  Google Scholar 

  155. Woods, A.J., et al., PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions. Embo J, 2004. 23(13): p. 2531–43.

    PubMed  CAS  Google Scholar 

  156. Pollard, T.D. and G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell, 2003. 112(4): p. 453–65.

    PubMed  CAS  Google Scholar 

  157. Wang, W., R. Eddy, and J. Condeelis, The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer, 2007. 7(6): p. 429–40.

    PubMed  CAS  Google Scholar 

  158. Storz, P., Protein kinase D1: a novel regulator of actin-driven directed cell migration. Cell Cycle, 2009. 8(13): p. 1975–6.

    PubMed  Google Scholar 

  159. Soosairajah, J., et al., Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. Embo J, 2005. 24(3): p. 473–86.

    PubMed  CAS  Google Scholar 

  160. Nagata-Ohashi, K., et al., A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J Cell Biol, 2004. 165(4): p. 465–71.

    PubMed  Google Scholar 

  161. Janssens, K., et al., Characterization of EVL-I as a protein kinase D substrate. Cell Signal, 2009. 21(2): p. 282–92.

    PubMed  CAS  Google Scholar 

  162. De Kimpe, L., et al., Characterization of cortactin as an in vivo protein kinase D substrate: interdependence of sites and potentiation by Src. Cell Signal, 2009. 21(2): p. 253–63.

    PubMed  Google Scholar 

  163. Liljedahl, M., et al., Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell, 2001. 104(3): p. 409–20.

    PubMed  CAS  Google Scholar 

  164. Hausser, A., et al., Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat Cell Biol, 2005. 7(9): p. 880–6.

    PubMed  CAS  Google Scholar 

  165. Ghanekar, Y. and M. Lowe, Protein kinase D: activation for Golgi carrier formation. Trends Cell Biol, 2005. 15(10): p. 511–4.

    PubMed  CAS  Google Scholar 

  166. Prigozhina, N.L. and C.M. Waterman-Storer, Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol, 2004. 14(2): p. 88–98.

    PubMed  CAS  Google Scholar 

  167. Hegedus, L., et al., Additional MDA-MB-231 breast cancer cell matrix metalloproteinases promote invasiveness. J Cell Physiol, 2008. 216(2): p. 480–5.

    PubMed  CAS  Google Scholar 

  168. Hotary, K., et al., A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev, 2006. 20(19): p. 2673–86.

    PubMed  CAS  Google Scholar 

  169. Ramos-DeSimone, N., et al., Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem, 1999. 274(19): p. 13066–76.

    PubMed  CAS  Google Scholar 

  170. Reuben, P.M., Y. Sun, and H.S. Cheung, Basic calcium phosphate crystals activate p44/42 MAPK signal transduction pathway via protein kinase Cmicro in human fibroblasts. J Biol Chem, 2004. 279(34): p. 35719–25.

    PubMed  CAS  Google Scholar 

  171. Farina, A.R., et al., Inhibition of human MDA-MB-231 breast cancer cell invasion by matrix metalloproteinase 3 involves degradation of plasminogen. Eur J Biochem, 2002. 269(18): p. 4476–83.

    PubMed  CAS  Google Scholar 

  172. Bowden, E.T., et al., An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene, 1999. 18(31): p. 4440–9.

    PubMed  CAS  Google Scholar 

  173. Qiang, Y.W., et al., Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood, 2004. 103(1): p. 301–8.

    PubMed  CAS  Google Scholar 

  174. Hellerstedt, B.A. and K.J. Pienta, The current state of hormonal therapy for prostate cancer. CA Cancer J Clin, 2002. 52(3): p. 154–79.

    PubMed  Google Scholar 

  175. Powell, C.T., et al., Persistent membrane translocation of protein kinase C alpha during 12-0-tetradecanoylphorbol-13-acetate-induced apoptosis of LNCaP human prostate cancer cells. Cell Growth Differ, 1996. 7(4): p. 419–28.

    PubMed  CAS  Google Scholar 

  176. Mak, P., et al., Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Biochem Biophys Res Commun, 2008. 373(4): p. 618–23.

    PubMed  CAS  Google Scholar 

  177. Hassan, S., et al., Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene, 2009. 28(49): p. 4386–96.

    PubMed  CAS  Google Scholar 

  178. Ristich, V.L., et al., Protein kinase D distribution in normal human epidermis, basal cell carcinoma and psoriasis. Br J Dermatol, 2006. 154(4): p. 586–93.

    PubMed  CAS  Google Scholar 

  179. Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995. 1(1): p. 27–31.

    PubMed  CAS  Google Scholar 

  180. Yancopoulos, G.D., et al., Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242–8.

    PubMed  CAS  Google Scholar 

  181. Carmeliet, P., et al., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996. 380(6573): p. 435–9.

    PubMed  CAS  Google Scholar 

  182. Wong, C. and Z.G. Jin, Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J Biol Chem, 2005. 280(39): p. 33262–9.

    PubMed  CAS  Google Scholar 

  183. Harrington, E.O., et al., Role of protein kinase C isoforms in rat epididymal microvascular endothelial barrier function. Am J Respir Cell Mol Biol, 2003. 28(5): p. 626–36.

    PubMed  CAS  Google Scholar 

  184. Tinsley, J.H., N.R. Teasdale, and S.Y. Yuan, Involvement of PKCdelta and PKD in pulmonary microvascular endothelial cell hyperpermeability. Am J Physiol Cell Physiol, 2004. 286(1): p. C105-11.

    PubMed  CAS  Google Scholar 

  185. Evans, I.M., G. Britton, and I.C. Zachary, Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cell Signal, 2008. 20(7): p. 1375–84.

    PubMed  CAS  Google Scholar 

  186. Abedi, H., E. Rozengurt, and I. Zachary, Rapid activation of the novel serine/threonine protein kinase, protein kinase D by phorbol esters, angiotensin II and PDGF-BB in vascular smooth muscle cells. FEBS Lett, 1998. 427(2): p. 209–12.

    PubMed  CAS  Google Scholar 

  187. Qin, L., H. Zeng, and D. Zhao, Requirement of protein kinase D tyrosine phosphorylation for VEGF-A165-induced angiogenesis through its interaction and regulation of phospholipase Cgamma phosphorylation. J Biol Chem, 2006. 281(43): p. 32550–8.

    PubMed  CAS  Google Scholar 

  188. Gschwendt, M., et al., Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett, 1996. 392(2): p. 77–80.

    PubMed  CAS  Google Scholar 

  189. Tinhofer, I., et al., Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. Faseb J, 2001. 15(9): p. 1613–5.

    PubMed  CAS  Google Scholar 

  190. Cal, C., et al., Resveratrol and cancer: chemoprevention, apoptosis, and chemo-immunosensitizing activities. Curr Med Chem Anticancer Agents, 2003. 3(2): p. 77–93.

    PubMed  CAS  Google Scholar 

  191. Udenigwe, C.C., et al., Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev, 2008. 66(8): p. 445–54.

    PubMed  Google Scholar 

  192. Kundu, J.K. and Y.J. Surh, Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett, 2008. 269(2): p. 243–61.

    PubMed  CAS  Google Scholar 

  193. Goswami, S.K. and D.K. Das, Resveratrol and chemoprevention. Cancer Lett, 2009. 284(1): p. 1–6.

    PubMed  CAS  Google Scholar 

  194. Manna, S.K., A. Mukhopadhyay, and B.B. Aggarwal, Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol, 2000. 164(12): p. 6509–19.

    PubMed  CAS  Google Scholar 

  195. Slater, S.J., et al., Inhibition of protein kinase C by resveratrol. Biochim Biophys Acta, 2003. 1637(1): p. 59–69.

    PubMed  CAS  Google Scholar 

  196. Haworth, R.S. and M. Avkiran, Inhibition of protein kinase D by resveratrol. Biochem Pharmacol, 2001. 62(12): p. 1647–51.

    PubMed  CAS  Google Scholar 

  197. Stewart, J.R., et al., Resveratrol preferentially inhibits protein kinase C-catalyzed phosphorylation of a cofactor-independent, arginine-rich protein substrate by a novel mechanism. Biochemistry, 1999. 38(40): p. 13244–51.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Storz laboratory is supported by grants from the Mayo Clinic SPORE for Pancreatic Cancer (P50 CA102701), the Mayo Clinic Breast Cancer SPORE (CA116201-03DR4), the NIH (GM86435 and CA135102), as well as a Bankhead–Coley grant (10BG11) from the Florida Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Storz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Storz, P. (2012). Protein Kinase D Signaling in Cancer. In: Chatterjee, M., Kashfi, K. (eds) Cell Signaling & Molecular Targets in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0730-0_11

Download citation

Publish with us

Policies and ethics