Skip to main content

Protein Dynamics and Function

  • Chapter
  • First Online:
Dynamics of Soft Matter

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

The physical properties of the neutron makes it an ideal tool to investigate the structure and dynamics of macromolecules. For biological systems, neutrons can probe motions that range from protein internal dynamics to global motions of proteins in solutions or in cells. Both types of studies can bring specific information on the way the macromolecules realize their function, at the single molecule level or collectively. We review how the different types of motion can be separated and which kind of approach is the more suited for a specific study. The coupling between internal dynamics and protein function has been the center of a large number of studies which are often controversial. We define the theoretical concepts and critically review some experimental and numerical results. On a larger lengthscale, protein diffusion in solution can be compared to the theories developed for the investigation of colloids dynamics, which can aid the interpretations of diffusion measurements in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacrot B (1976) Study of biological structures by neutron scattering from solution. Rep Prog Physics 39:911–953

    Article  CAS  Google Scholar 

  2. Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic scattering. Nature 337:754–756

    Article  CAS  Google Scholar 

  3. Doster W, Longeville S (2007) Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells. Biophys J 93:1360–1368

    Article  CAS  Google Scholar 

  4. Doster W, Settles M (2005) Protein–water displacement distributions. Biochim Biophys Act 1749:173–186

    Article  CAS  Google Scholar 

  5. Lichtengegger H, Doster W, Kleinert T, Birk A, Sepiol B, Vogl G (1999) Heme-solvent coupling, a mossbauer study of myoglobin in sucrose. Biophys J 76:595–603

    Article  Google Scholar 

  6. Tilton RF, Kunz ID, Petsko GA (1984) Cavities in proteins. Biochem 23:2849–2857

    Article  CAS  Google Scholar 

  7. Brunori M, Gibson QH (2001) Cavities and packing defects in the structural dynamics of myoglobin. EMBO reports 2, 8:674–679

    Article  CAS  Google Scholar 

  8. Srajer V, Teng TY, Ursby T, Pradervand C, Ren Z, Adachi S, Schildkamp W, Bourgeois D, Wulff M, Mofat K (1996) Photolysis of the carbon monoxide complex of myoglobin: nano-second time-resolved crystallography. Science 274:1726–1729

    Article  CAS  Google Scholar 

  9. Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN, Wullff M, Anfinrud PA (2003) Watching a protein as it functions with 150 ps time-resolved X-ray crystallography. Science 300:1944–1947

    Article  CAS  Google Scholar 

  10. Tomita A, Sato T, Nozawa S, Ichiyanagi K, Ichikawa H, Chollet M, Kawai F, Park S-Y, Yamato T, Tsuduki T, Koshihara S-Y, Adachi S-I (2009) Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin. Proc Natl Acad Sci 106:2612–2616

    Article  Google Scholar 

  11. Elber R, Karplus M (1990) Enhanced sampling in molecular dynamics: use of the time dependent hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J Am Chem Soc 112:9161–9175

    Article  CAS  Google Scholar 

  12. Cohen J, Arkhipov A, Braun R, Schulten K (2006) Imaging the migration pathway for o2, co, no and ce inside myoglobin. Biophys J 91:1844–1857

    Article  CAS  Google Scholar 

  13. Kleinert Th, Doster W, Leyser H, Petry W, Schwarz V, Settles M (1998) Solvent composition and viscosity effects on the kinetics of co-binding to horse myoglobin. Nature 37:717–733

    CAS  Google Scholar 

  14. Doster W (2010) The protein-solvent glass transition. Bioch Biophys Act 1804:3–14

    CAS  Google Scholar 

  15. Ansari A, Jones C, Henry ER, Hofrichter J, Eaton MA (1992) The role of solvent viscosity in the dynamics of protein conformational-changes. Science 256:1796–1796

    Article  CAS  Google Scholar 

  16. Beece D, Eisenstein L, Frauenfelder H, Good D, Marden M, Reinisch L, Reynolds A, Sorenson L, Yu K (1980) Viscosity and protein dynamics. Biochem 19:5147–5157

    Article  CAS  Google Scholar 

  17. Timasheff SN (2002) Protein hydration, thermodynamic binding and preferential hydration. Biochem 41:13473–13482

    Article  CAS  Google Scholar 

  18. Parak F, Knapp EW (1984) A consistent picture of protein dynamics. Proc Natl Acad Sci USA 81:7088–7092

    Article  CAS  Google Scholar 

  19. Parak F, Achterhold K (2005) Protein dynamics on different timescales. J Phys Chem Solids 66:2257–2262

    Article  CAS  Google Scholar 

  20. Doster W (2005) Brownian oscillator analysis of molecular motions in biomolecules. In: Fitter J, Gutberlet T, Katsaras J (eds) Neutron Scattering in Biology. Springer Series in Biological and Medical Physics, Biomedical Engeneering. p 461–482

    Google Scholar 

  21. Doster W (2006) Dynamic structural distibutions in proteins. Physica B 385–386:831–834

    Article  CAS  Google Scholar 

  22. Roh RH, Novikov VN, Gregory RB, Curtis JE, Chaowduri Z, Sokolov AP (2005) Onset of harmonicity of protein dynamics. Phys Rev Lett 95:038101–038103

    Article  CAS  Google Scholar 

  23. Zaccai J (2000) How soft is a protein? a protein force constant measured by neutron scattering. Science 288:1604–1607

    Article  CAS  Google Scholar 

  24. Cordone L, Ferrand M, Vitrano E, Zaccai G (1996) Biophys J 76:1043–1047

    Article  Google Scholar 

  25. Doster W (1998) Dynamical transition of proteins, the role of hydrogen bonds. In: Marie-Claire Bellissent-Funel (ed) Hydration Processes in Biology. (Les Houches Lectures) IOS Press

    Google Scholar 

  26. Doster W (2008) The dynamical transition of proteins, concepts and misconceptions. Eur Biophys J 37:591–602

    Article  CAS  Google Scholar 

  27. Doster W, Diehl M, Petry W, Ferrand M (2001) Elastic resolution spectroscopy: a method to study molecular motions in small biological samples. Physica B 301:65–68

    Article  CAS  Google Scholar 

  28. Doster W, Diehl M, Gebhardt R, Lechner, RE, Pieper J (2003) Elastic resolution spectroscopy: a method to study molecular motions in small biological samples. Chem Phys 292:487–494

    Article  CAS  Google Scholar 

  29. Settles M, Doster W (1996) Anomalous diffusion of protein hydration water. Faraday Discussions 103:269–279

    Article  CAS  Google Scholar 

  30. Paciaroni A, Cinelli S, Onori G (2002) Effect of the environment on the protein dynamical transition, a neutron scattering study. Biophys J 83:1157–1164

    Article  CAS  Google Scholar 

  31. Onori G, Cornicchi E, Paciaroni A (2005) Picosecond time scale fluctuations of proteins in glassy matrices: the role of viscosity. Phys Rev Lett 95:158104

    Article  CAS  Google Scholar 

  32. Doster W, Busch S, Appavou MS, Gaspar A, Wuttke J, Scheer J (2010) The dynamical transition of protein hydration water. Phys Rev Lett 104:098101–098104

    Article  CAS  Google Scholar 

  33. Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Dynamics of ligand binding to myoglobin. Biochem 14:5355–5373

    Article  CAS  Google Scholar 

  34. Post F, Doster W, Karvounis G, Settles M (1993) Structural relaxation and nonexponential kinetics of ligand binding to horse myoglobin. Biophys J 64:1833–1844

    Article  CAS  Google Scholar 

  35. Neumann DA, Tsai AM, Bell LN (2000) Molecular dynamics of solid state lysozyme as affected by glycerol and water: a neutron scattering study. Biophys J 79:2728–2732

    Article  Google Scholar 

  36. Demmel F, Doster W, Petry W, Schulte A (1997) Vibrational frequencies as a probe of hydrogen bonds: thermal expansion and glass transition of myoglobin in mixed solvents. Eur Biophys J 26:327–335

    Article  CAS  Google Scholar 

  37. Phillies GDJ (1974) Effects of intermolecular interactions on diffusion. 1. 2-component solutions. J Chem Phys 60:976–982

    Article  CAS  Google Scholar 

  38. Phillies GDJ (1975) Continuum hydrodynamic interactions and diffusion. J Chem Phys 62:3925–3932

    Article  CAS  Google Scholar 

  39. Pusey PN (1975) Scaled particle theory of fluid mixtures. J Phys A Math Nucl Gen 8:1433–1440

    Article  Google Scholar 

  40. Ackerson BJ (1976) Correlations for interacting brownian particles. J Chem Phys 64:242–246

    Article  CAS  Google Scholar 

  41. Ackerson BJ (1978) Correlations for interacting brownian particles. 2. J Chem Phys 69:684–690

    Article  CAS  Google Scholar 

  42. Beenakker CWJ, Mazur P (1983) Self-diffusion of spheres in a concentrated suspension. Physica 120A:388–410

    Article  CAS  Google Scholar 

  43. Beenakker CWJ, Mazur P (1984) Diffusion of spheres in a concentrated suspension 2. Physica 126:349–370

    Article  Google Scholar 

  44. Médina-Noyola M (1988) Long-time self-diffusion in concentrated colloidal dispersions. Phys Rev Lett 60:2705–2708

    Article  Google Scholar 

  45. Tokuyama M, Oppenheim I (1994) Dynamics of hard sphere suspension. Phys Rev E 50:R16–R19

    Article  CAS  Google Scholar 

  46. Hayter JB, Penfold J (1981) An analytical struture factor for macroion solutions. Mol Physics 42:109–118

    Article  CAS  Google Scholar 

  47. Hansen JP, Hayter JB (1982) A rescaled msa structure factor for dilute charged collodal dispersions. Mol Phys 46:651–656

    Article  CAS  Google Scholar 

  48. Belloni L (1986) Electrostatic interactions in collodal solutions – comparaison between primitive and one-component model. J Chem Phys 85:519–526

    Article  CAS  Google Scholar 

  49. Dix JA, Verkman AS (2008) Crowding effects on diffusion in solutions and cells. Annu Rev Biophys 37:247–263

    Article  CAS  Google Scholar 

  50. Carmo-Fonseca M, Platani M, Sweldow JR (2002) Macromolecular mobility inside cell nucleus. Trends Cell Biol 12:491–495

    Article  CAS  Google Scholar 

  51. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nature 2:444–456

    CAS  Google Scholar 

  52. Phair RD, Misteli T (2000) High mobility of proteins in the mamalian cell nucleus. Nature 404:604–609

    Article  CAS  Google Scholar 

  53. Bendedouch D, Chen S-H (1983) Structure and interparticle interactions of boviner serum albumin in solution studied by small-angle neutron scattering. J Phys Chem 87:1473–1477

    Article  CAS  Google Scholar 

  54. Krueger S, Nossal R (1988) Sans studies of interacting hemoglobin in intact erythrocytes. Biophys J 53:97–105

    Article  CAS  Google Scholar 

  55. Krueger S, Chen S-H, Hofrichter J, Nossal R (1990) Small-angle neutron-scattering studies of hba in concentrated solutions. Biophys J 58:745–757

    Article  CAS  Google Scholar 

  56. Longeville S, Doster W, Kali G (2003) Myoglobin in crowded solutions: structure and diffusion. Chem Phys 292:413–424

    Article  CAS  Google Scholar 

  57. Riveros-Moreno V, Wittenberg JB (1972) Self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J Biol Chem 247:895–901

    CAS  Google Scholar 

  58. Alpert SS, Banks G (1976) The concentration dependence of the hemoglobin mutual diffusion coefficient. Biophys Chem 4:287–296

    Article  CAS  Google Scholar 

  59. Hall RS, Johnson CS (1980) Experimental-evidence that mutual and tracer diffusion-coefficients for hemoglobin are not equal. J Chem Phys 72:4251–4253

    Article  CAS  Google Scholar 

  60. Longeville S, Doster W, Diehl M, Gaehler R, Petry W (2003) Neutron resonance spin echo: Oxygen transport in crowded protein solutions. In: Mezei F, Pappas C, Gutberlet T (eds) Neutron spin echo spectroscopy, basic trends and applications. Lecture notes in physics, vol 601. Springer, Berlin, pp 325–335

    Google Scholar 

  61. Le Coeur C, Demé B, Longeville S (2009) The compression of random coils due to macromolecular crowding. Phys Rev E 79:031910

    Article  CAS  Google Scholar 

  62. Haeussler W (2003) Structure and dynamics in apoferritin solutions with paracrystalline order. Chem Phys 292:425–434

    Article  CAS  Google Scholar 

  63. Haeussler W, Farago B (2003) Diffusive dynamics in ordered solutions of apoferritin solutions near the structure factor peaks. J Phys Condens Matter 15:S197–S204

    Article  Google Scholar 

  64. Banchio AJ, Gapinsky J, Patkowski A, Haeussler W, Fluerasu A, Sacanna S, Holmqvist P, Meier G, Lettinga MP, Naegele G (2006) Many-body hydrodynamic interactions in charged-stabilized suspensions. Phys Rev Lett 96:138303

    Article  CAS  Google Scholar 

  65. Haeussler W (2008) Neutron spin echo studies on ferritin: free-particle diffusion and interacting solutions. Eur Biophys J 37:563–571

    Article  CAS  Google Scholar 

  66. Gapinski J, Wilk A, Patkowski A, Häußler W, Banchio AJ, Pecora R, Nägele G (2005) Diffusion and microstructural properties of solutions of charged nanosized proteins: experiment versus theory. J Chem Phys 123:054708

    Article  CAS  Google Scholar 

  67. Muramatsu N, Minton AP (1988) Tracer diffusion of globular-proteins in concentrated protein solutions. Proc Natl Acad Sci USA 85:2984–2988

    Article  CAS  Google Scholar 

  68. Ross PD, Minton AP (1977) Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Comm 76:971–976

    Article  CAS  Google Scholar 

  69. van Megen W, Underwood SM, Snook I (1986) Tracer diffusion in concentrated colloidal suspension. J Chem Phys 85:4065–4072

    Article  Google Scholar 

  70. Pusey PN (1991) Colloidal suspensions. In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition. Les Houches Summer School Proceedings, vol. 1, Elsevier Science Ltd, Oxford, p 504

    Google Scholar 

  71. Lavalette D, Tetreau C, Tourbez M, Blouquit Y (1999) Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys J 76:2744–2751

    Article  CAS  Google Scholar 

  72. Le Coeur C, Longeville S (2008) Microscopic protein diffusion at high concentration by neutron spin-echo spectroscopy. Chem Phys 345:298–304

    Article  CAS  Google Scholar 

  73. de Gennes P-G (1959) Liquid dynamics and inelastic scattering of neutrons. Physica 25:825

    Article  Google Scholar 

  74. Jones CR, Johnson CS, Penniston JT (1978) Photon correlation spectroscopy of hemoglobin – diffusion of oxy-hba and oxy-hbs. Biopolymers 17:1581–1593

    Article  CAS  Google Scholar 

  75. Everheart CH, Johnson CS (1982) Pulse field gradient nmr determination of the temperature dependence of the tracer diffusion coefficient of hemoglobin. Biopolymers 21:2049–2054

    Article  Google Scholar 

  76. Kuchel PW, Chapman BE (1991) Translational diffusion of hemoglobin in human erythrocytes and hemolysates. J Magnet Res 94:574–580

    CAS  Google Scholar 

  77. Stadler AM, Digel I, Artmann GM, Embs JP, Zaccai G, Bueldt G (2008) Hemoglobin dynamics in red blood cells: correlation to body temperature. Biophys J 95:5449–5461

    Article  CAS  Google Scholar 

  78. Perez J, Zanotti J-M, Durand D (1999) Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys J 77:454–469

    Article  CAS  Google Scholar 

  79. Singwi KS, Sjoelander A (1960) Resonance absorption of nuclear gamma rays and the dynamics of atomic motions. Phys Rev 120:1093–1102

    Article  Google Scholar 

  80. Sears VF (1966a) Cold neutron scattering by homonuclear diatomic liquid: 1 free rotation. Can J Phys 44:1279

    Article  CAS  Google Scholar 

  81. Sears VF (1966b) Cold neutron scattering by homonuclear diatomic liquid: 2 hindred rotation. Can J Phys 44:1999

    Google Scholar 

  82. Bu Z, Biehl R, Monkenbusch M, Richter D, Callaway DJE (2005) Coupled protein domain motion in taq polymerase revealed by neutron spin-echo spectroscopy. Proc Natl Acad Sci 102:17646–17651

    Article  CAS  Google Scholar 

  83. Biehl R, Hoffmann B, Monkenbusch M, Falus P, Préost S, Merkel R, Richter D (2008) Direct observation of correlated interdomain motion in alcohol dehydrogenase. Phys Rev Lett 101:138102

    Article  CAS  Google Scholar 

  84. Huertas ML, de la Torre JG, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Article  Google Scholar 

  85. Segre PN, Pusey PN (1996) Phys Rev Lett 77:771–774

    Article  CAS  Google Scholar 

  86. Dwyer JD, Bloomfield VA (1993) Brownian dynamics simulations of probe and self-diffusion in concentrated protein and DNA solutions. Biophys J 65:1810–1816

    Article  CAS  Google Scholar 

  87. Martin Chalfie, Yuan Tu, Ghia Euskirchen, William W. Ward, Douglas C. Prasherf (1994) Science 263:802–805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Longeville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Longeville, S., Doster, W. (2012). Protein Dynamics and Function. In: García Sakai, V., Alba-Simionesco, C., Chen, SH. (eds) Dynamics of Soft Matter. Neutron Scattering Applications and Techniques. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0727-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0727-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0726-3

  • Online ISBN: 978-1-4614-0727-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics