Basic Modes of Motion in Polymers

Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


Polymers exhibit a complex spectrum of motions, with time scale ranging from hours needed for reorientation of whole chains in the melt to femtoseconds of bond vibrations. The description of polymer motions demands a wide range of theoretical and experimental approaches. This chapter explores the fundamentals, starting from the whole chain motion in solutions and melts through vibrations to side chain motions in the solid state. The models stemming from neutron techniques are set in the context of results obtained by other techniques, especially NMR. Considerations of dynamics in glass-forming polymers conclude this chapter.


Incoherent Scattering Excess Heat Capacity Phonon Dispersion Curve Boson Peak Rouse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brockhouse BN, Shull CG (1994) from (Accessed 19 October 2011)
  2. 2.
    de Gennes PG (1991) The Nobel Prize in Physics 1991. From (Accessed 19 October 2011)
  3. 3.
    Higgins JS, Benoit H (1994) Polymers and neutron scattering. Clarendon, OxfordGoogle Scholar
  4. 4.
    Moon RM, Riste T (1969) Polarization analysis of thermal-neutron scattering. Phys Rev 181(2):920CrossRefGoogle Scholar
  5. 5.
    Mezei F (1972) Z Phys Neutron Spin-Echo: A new concept in polarized thermal neutron techniques. 255:146Google Scholar
  6. 6.
    Zajac W, Gabrys BJ et al (2002) Structure of poly(ethylene oxide) (PEO and PEO ⋅LiSO3CF3) studied with spin polarised neutrons. Solid State Ionics 147(3–4):213–223CrossRefGoogle Scholar
  7. 7.
    Gabrys B, Higgins JS et al (1986) Contamination by coherent scattering of the elastic incoherent structure factor observed in neutron scattering experiments. J Chem Soc Faraday Trans 82:1923–1927CrossRefGoogle Scholar
  8. 8.
    Schärpf O, Capellmann H (1993) The XYZ-difference method with polarized neutrons and the separation of coherent, spin incoherent, and magnetic scattering cross sections in a multidetector. Phys Stat Sol A 135:359CrossRefGoogle Scholar
  9. 9.
    Schärpf O (1996) The spin of the neutron as a measuring probe. 10th International summer school of condensed matter physics, Bialowieza, PolandGoogle Scholar
  10. 10.
    Schärpf O, Anderson I (1996) Classical polarization analysis. J Neutron Res 4(1–4):227–240CrossRefGoogle Scholar
  11. 11.
    Schärpf O (1985) Experience with spin analysis on a time-of-flight multidetector scattering instrument. Neutron scattering in the ‘nineties, Vienna, I.A.E.AGoogle Scholar
  12. 12.
    Schärpf O, Gabrys B et al (1990) Short range order in isotactic, atactic and sulphonated polystyrene measured by polarised neutrons. Institute Laue-Langevin, GrenobleGoogle Scholar
  13. 13.
    de Gennes PG (1971) J Chem Phys 55:572CrossRefGoogle Scholar
  14. 14.
    Nicholson LK (1981) The neutron spin-echo spectrometer: a new high resolution technique in neutron spectroscopy. Contemp Phys 22(4):451–475CrossRefGoogle Scholar
  15. 15.
    Richter D (2006) Neutron spin echo for the exploration of large scale macromolecular dynamics. J Phys Soc Japan 75(11):111004CrossRefGoogle Scholar
  16. 16.
    Bée M (1988) Quasielastic neutron scattering: principles and applications in solid state chemistry, biology and materials science. Hilger, BristolGoogle Scholar
  17. 17.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, OxfordGoogle Scholar
  18. 18.
    Rouse JPE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280CrossRefGoogle Scholar
  19. 19.
    Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24(2):269–278CrossRefGoogle Scholar
  20. 20.
    Pecora R (1968) Spectral distribution of light scattered from flexible-coil macromolecules. J Chem Phys 49(3):1032–1035CrossRefGoogle Scholar
  21. 21.
    de Gennes PG (1967) Physics 3:37Google Scholar
  22. 22.
    Richter D, Ewen B (1989) Neutron-spin echo investigations on the dynamics of polymer systems. Prog Colloid Polymer Sci 80:53–62CrossRefGoogle Scholar
  23. 23.
    Richter D, Ewen B et al (1989) Microscopic dynamics and topological constraints in polymer melts: a neutron-spin-echo study. Phys Rev Lett 62(18):2140CrossRefGoogle Scholar
  24. 24.
    de Gennes PG (1981) Coherent scattering by one reptating chain. J Phys I France 42(5):735–740Google Scholar
  25. 25.
    Ronca G (1983) Frequency spectrum and dynamic correlations of concentrated polymer liquids. J Chem Phys 79(2):1031–1043CrossRefGoogle Scholar
  26. 26.
    des Cloizeaux J (1993) Dynamic form function of a long polymer constrained by entanglements in a polymer melt. J Phys I France 3(7):1523–1539Google Scholar
  27. 27.
    Higgins JS, Roots JE (1985) Effects of entanglements on the single-chain motion of polymer molecules in melt samples observed by neutron scattering. J Chem Soc Faraday Trans 2 Mol Chem Phys 81:757–767Google Scholar
  28. 28.
    Richter D, Butera R et al (1992) Entanglement constraints in polymer melts. A neutron spin echo study. Macromolecules 25(23):6156–6164Google Scholar
  29. 29.
    Schleger P, Farago B et al (1998) Clear evidence of reptation in polyethylene from neutron spin-echo spectroscopy. Phys Rev Lett 81(1):124CrossRefGoogle Scholar
  30. 30.
    Denker JS (2009) Introduction to scaling laws. From (Accessed on 28 November 2011)
  31. 31.
    Doi M (1996) Introduction to polymer physics. Clarendon, OxfordGoogle Scholar
  32. 32.
    Affouard F, Descamps M et al (2006) Proceedings of the 5th International Discussion Meeting on Relaxations in Complex Systems. Journal of Non-Crystalline Solids, 352, Lille, FranceGoogle Scholar
  33. 33.
    Kittel C (1976) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
  34. 34.
    Twisleton JF, White JW (1972) Interchain force field and elastic constants of polytetrafluoroethylene. Polymer 13(1):40–42CrossRefGoogle Scholar
  35. 35.
    Willis BTM (1973) Chemical applications of thermal neutron scattering [S.l.]. Oxford University Press, OxfordGoogle Scholar
  36. 36.
    Danner HR, Safford GJ et al (1964) Study of low-frequency motions in polyethylene and the paraffin hydrocarbons by neutron inelastic scattering. J Chem Phys 40(5):1417–1425CrossRefGoogle Scholar
  37. 37.
    Myers W, Donovan JL et al (1965) Polyethylene frequency spectrum from “warm”-neutron scattering. J Chem Phys 42(12):4299–4300CrossRefGoogle Scholar
  38. 38.
    Kitagawa T, Miyazawa T (1967) Inelastic-scattering cross section of neutron by crystal vibrations of polyethylene. J Chem Phys 47(1):337–338CrossRefGoogle Scholar
  39. 39.
    Myers W, Summerfield GC et al (1966) Neutron scattering in stretch-oriented polyethylene. J Chem Phys 44(1):184–187CrossRefGoogle Scholar
  40. 40.
    Kitagawa T, Miyazawa T (1973) Adv Polymer Sci 9:335Google Scholar
  41. 41.
    Braden DA, Parker SF et al (1999) Inelastic neutron scattering spectra of the longitudinal acoustic modes of the normal alkanes from pentane to pentacosane. J Chem Phys 111(1):429–437CrossRefGoogle Scholar
  42. 42.
    Alvarez F, Alegría A et al (2000) Origin of the distribution of potential barriers for methyl group dynamics in glassy polymers: a molecular dynamics simulation in polyisoprene. Macromolecules 33(21):8077–8084CrossRefGoogle Scholar
  43. 43.
    Segall MD, Lindan PJD et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Cond Matt 14:2717–2744CrossRefGoogle Scholar
  44. 44.
    Smith J, Kuczera K et al (1990) Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc Nat Acad Sci 87(4):1601–1605CrossRefGoogle Scholar
  45. 45.
    Gabrys BJ, Zajac W et al (2001) QENS from “soft” systems: why use polarised neutrons? Physica B Cond Matt 301(1–2):69–77CrossRefGoogle Scholar
  46. 46.
    Ediger MD (1991) Time-resolved optical studies of local polymer dynamics. Ann Rev Phys Chem 42(1):225–250CrossRefGoogle Scholar
  47. 47.
    Schatzki TF (1962) Statistical computation of distribution functions of dimensions of macromolecules. J Polymer Sci 57(165):337–356CrossRefGoogle Scholar
  48. 48.
    Monnerie L, Geny J (1969) J Chim Phys Phys Chim Biol 66:1691Google Scholar
  49. 49.
    Kanaya T, Kaji K et al (1991) Local motions of cis-1,4-polybutadiene in the melt. A quasielastic neutron-scattering study. Macromolecules 24(8):1826–1832Google Scholar
  50. 50.
    Kanaya T, Kawaguchi T et al (1999) Local dynamics of some bulk polymers above Tg as seen by quasielastic neutron scattering. Macromolecules 32(5):1672–1678CrossRefGoogle Scholar
  51. 51.
    Colmenero J, Moreno AJ et al (2001) Neutron scattering investigations on methyl group dynamics in polymers. Prog Polymer Sci 30(12):1147–1184CrossRefGoogle Scholar
  52. 52.
    Clough S, Heidemann A et al (1982) The rate of thermally activated methyl group rotation in solids. J Phys C Solid State Phys 15:2495–2508CrossRefGoogle Scholar
  53. 53.
    Hewson AC (1978) The temperature dependence of inelastic neutron scattering in rotational tunnelling systems. I. Formulation and perturbation theory. J Phys C Solid State Phys 15(18):3841–3853Google Scholar
  54. 54.
    Van Hecke P, Janssens G (1978) NMR direct detection of tunnel splittings in solid SiH4. Phys Rev B 17(5):2124CrossRefGoogle Scholar
  55. 55.
    Gabrys B, van Gerven L (1981) Rotational tunneling of methyl groups in pentamethylbenzene studied by NMR relaxation resonance. Chem Phys Lett 82(2):260–263CrossRefGoogle Scholar
  56. 56.
    Allen PS, Cowking A (1968) Nuclear magnetic resonance study of hindered rotations in some methylbenzenes. J Chem Phys 49(2):789–797CrossRefGoogle Scholar
  57. 57.
    Clough S, Horsewill AJ et al (1981) Neutron scattering study of methyl tunnelling in pentamethylbenzene. Chem Phys Lett 82(2):264–266CrossRefGoogle Scholar
  58. 58.
    Colmenero J, Mukhopadhyay R et al (1998) Quantum rotational tunneling of methyl groups in polymers. Phys Rev Lett 80(11):2350CrossRefGoogle Scholar
  59. 59.
    Bée M (1988) Quasielastic neutron scattering: principles and applications in solid state chemistry, biology and materials science. Hilger, BristolGoogle Scholar
  60. 60.
    Bée M (1992) A physical insight into the elastic incoherent structure factor. Physica B Cond Matt 182(4):323–336CrossRefGoogle Scholar
  61. 61.
    Kirov N, Dozov I et al (2006) Elastic incoherent neutron scattering of rotational and translational dynamics in liquid crystals. J Mol Struc 788(1–3):7–15CrossRefGoogle Scholar
  62. 62.
    Gabrys B, Higgins JS et al (1984) Rotational motion of the ester methyl group in stereoregular poly(methyl methacrylate): a neutron scattering study. Macromolecules 17(4):560–566CrossRefGoogle Scholar
  63. 63.
    Barnes JD (1973) Inelastic neutron scattering study of the “rotator” phase transition in n-nonadecane. J Chem Phys 58(12):5193–5201CrossRefGoogle Scholar
  64. 64.
    Hervet H, Dianoux AJ et al (1976) Neutron scattering study of methyl group rotation in solid para-azoxyanisole (PAA). J Phys France 37:587CrossRefGoogle Scholar
  65. 65.
    Richardson RM, Leadbetter AJ et al (1980) A self-consistent interpretation of nuclear magnetic resonance and quasi-elastic neutron scattering data from the smectic A and nematic phases of ethyl 4-(4 acetoxybenzylidine) aminocinnamate. Mol Phys 40(3):741–757CrossRefGoogle Scholar
  66. 66.
    Gabrys B, Higgins JS et al (1985) Rotation of methyl groups in molecular solids and polymers at low temperatures: recent developments. Polymer 26(3):355–363CrossRefGoogle Scholar
  67. 67.
    Gabrys B, Clark JN et al (1987) Dynamics of solid poly(methacrylate): an NMR study: polymer motion in dense systems. Springer, GrenobleGoogle Scholar
  68. 68.
    Connor TM (1964) Distributions of correlation times and their effect on the comparison of molecular motions derived from nuclear spin-lattice and dielectric relaxation. Trans Faraday Soc 60:1574–1591CrossRefGoogle Scholar
  69. 69.
    Arrighi V, Higgins JS et al (1995) Rotation of methyl side groups in polymers: a Fourier transform approach to quasielastic neutron scattering. 1. Homopolymers. Macromolecules 28(8):2745–2753Google Scholar
  70. 70.
    Chahid A, Alegria A et al (2002) Methyl group dynamics in poly(vinyl methyl ether). A rotation rate distribution model. Macromolecules 27(12):3282–3288Google Scholar
  71. 71.
    Saelee C, Nicholson TM et al (2000) A molecular dynamics study of methyl group rotation in poly(vinyl methyl ether). Macromolecules 33(6):2258–2265CrossRefGoogle Scholar
  72. 72.
    Kitamaru RZ (1990) Nuclear magnetic resonance: principles and theory. Elsevier, AmsterdamGoogle Scholar
  73. 73.
    Gabrys B, Horii F et al (1987) Carbon-13 NMR study of the α-methyl group rotation in solid poly(methyl methacrylate): detection of the 13C T1 minimum. Macromolecules 20(1):175–177CrossRefGoogle Scholar
  74. 74.
    Howarth OW (1980) 13C nuclear magnetic resonance study of molecular motions in natural rubber. JCS Faraday II 76:1219–1223CrossRefGoogle Scholar
  75. 75.
    Fujara F, Wefing S et al (1986) Dynamics of molecular reorientations: analogies between quasielastic neutron scattering and deuteron NMR spin alignment. J Chem Phys 84(8):4579–4584CrossRefGoogle Scholar
  76. 76.
    Fujara F, Petry W et al (1988) Reorientation of benzene in its crystalline state: a model case for the analogy between nuclear magnetic resonance spin alignment and quasielastic incoherent neutron scattering. J Chem Phys 89(4):1801–1806CrossRefGoogle Scholar
  77. 77.
    Zajac W, Urban S et al (2006) Stochastic molecular motions in the nematic, smectic-A, and solid phases of p,  p -di-n-heptyl-azoxybenzene as seen by quasielastic neutron scattering and 13C cross-polarization magic-angle-spinning NMR, Phys Rev E 73(5): 051704CrossRefGoogle Scholar
  78. 78.
    Zeller RC, Pohl RO (1971) Thermal conductivity and specific heat of noncrystalline solids. Phys Rev B 4(6):2029CrossRefGoogle Scholar
  79. 79.
    Phillips WA (1972) Tunneling states in amorphous solids. J Low Temp Phys 7(3–4):351–361CrossRefGoogle Scholar
  80. 80.
    Anderson PW, Halperin BI et al (1972) Anomalous low-temperature thermal properties of glasses and spin glasses. Philos Mag 25(1):1–9CrossRefGoogle Scholar
  81. 81.
    Kanaya T, Kaji K (2001) Dynamics in the glassy state and near the glass transition of amorphous polymers as studied by neutron scattering. Adv Polymer Sci 154:87–141CrossRefGoogle Scholar
  82. 82.
    Inoue K, Kanaya T et al (1991) Low-energy excitations in amorphous polymers. J Chem Phys 95(7):5332–5340CrossRefGoogle Scholar
  83. 83.
    Kanaya T, Kawaguchi T et al (1993) Low-energy excitation and fast motion near Tg in amorphous cis-1,4-polybutadiene. J Chem Phys 98(10):8262–8270CrossRefGoogle Scholar
  84. 84.
    Frick B, Farago B, Richter D (1990) Phys Rev Lett 64:2921CrossRefGoogle Scholar
  85. 85.
    Ediger MD, Lutz TR et al (2006) Dynamics in glass-forming mixtures: comparison of behavior of polymeric and non-polymeric components. J Noncryst Solids 352(42–49):4718–4723CrossRefGoogle Scholar
  86. 86.
    Gabrys B, Schärpf O (1992) Scattering from polymers using polarised neutrons: a new development. Physica B 180 & 181:495–498Google Scholar
  87. 87.
    Adams MA, Gabrys BJ et al (2005) High-resolution incoherent inelastic neutron scattering spectra of polyisobutylene and polyisoprene. Macromolecules 38(1):160–166CrossRefGoogle Scholar
  88. 88.
    Richter D, Frick B, Farago B (1988) Neutron Spin-Echo investigation on the dynamics of polybutadiene near the glass transition. Phys Rev Lett 61(21):2465–2468CrossRefGoogle Scholar
  89. 89.
    Frick B, Zorn R et al (1992) Decoupling of time scales of motion in polybutadiene close to the glass transition. Phys Rev Lett 68:71–74CrossRefGoogle Scholar
  90. 90.
    Rössler E, Warschewske U et al (1994) Indications for a change of transport mechanism in supercooled liquids and the dynamics close and below Tg. J Noncryst Solids 172–174 (Part 1):113–125Google Scholar
  91. 91.
    Kanaya T, Kawaguchi T et al (1999) Local dynamics of some bulk polymers above Tg as seen by quasielastic neutron scattering. Macromolecules 32(5):1672–1678CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.Division of Multidisciplinary ChemistryPolymer Materials Science, Kyoto UniversityUjiJapan

Personalised recommendations