Skip to main content

Computational Tools to Understand Inelastic and Quasielastic Neutron Scattering Data

  • Chapter
  • First Online:
Dynamics of Soft Matter

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

  • 1644 Accesses

Abstract

The availability of user-friendly software and affordable multi-processor computers opens the door to the world of simulations to experimentalists, for “advanced data analysis”. Neutron scattering (NS), which explores length and time scales and probes the relative positions and motions of atoms as in simulations, constitutes the ideal partner for atomistic simulations. On the experimental side, the ever-increasing complexity of samples and therefore data requires more elaborate and realistic models. This chapter therefore describes, in practical terms, the simulation methods that can be used to interpret quasielastic and inelastic NS data, namely molecular dynamics and lattice dynamics. Both of these methods are based on the knowledge of inter-atomic interactions and total energy for which density functional theory and classical, force field-based methods are presented as the most viable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  2. Frenkel D, Smit B (2002) Understanding molecular simulation. Academic, San Diego

    Google Scholar 

  3. Cramer CJ (2004) Essentials of computational chemistry, theories and models. Wiley Ed, New York

    Google Scholar 

  4. Springborg M (2000) Methods of electronic structure calculations. Wiley, New York

    Google Scholar 

  5. Sutmann G (2002) Classical molecular dynamics in quantum simulations of complex many-body systems: from theory to algorithms, lecture notes. In: Grotendorst J, Marx D, Muramatsu A (eds) John von Neumann Institute for Computing, Julich, NIC Series, vol 10. ISBN 3-00-009057-6, pp 211–254

    Google Scholar 

  6. Allen MP (2004) Introduction to molecular dynamics simulation in computational soft matter: from synthetic polymers to proteins, lecture notes. In: Norbert Attig, Kurt Binder, Helmut Grubmuller, Kurt Kremer (eds) John von Neumann Institute for Computing, Julich, NIC Series, vol 23. ISBN 3-00-012641-4, pp 1–28

    Google Scholar 

  7. Parlinski K (1999) Calculation of phonon dispersion curves by the direct method. Am Instr Phys Conf Proc 479:121–126

    CAS  Google Scholar 

  8. Merzel F, Fontaine-Vive F, Johnson MR (2007) NMscatt: a program for calculating inelastic scattering from large biomolecular systems using classical force field simulations. Comput Phys Commun 177:530–538

    Article  CAS  Google Scholar 

  9. Meinhold L, Merzel F, Smith JC (2007) Lattice dynamics of a protein crystal. Phys Rev Lett 99:138101

    Article  Google Scholar 

  10. Plazanet M, Fontaine-Vive F, Gardner KH, Forsyth TV, Ivanov A, Ramirez-Cuesta AJ, Johnson MR (2005) Neutron vibrational spectroscopy gives new insight into the structure of poly (p-phenylene terephthalamide). J Am Chem Soc 127:6672

    Article  CAS  Google Scholar 

  11. Plazanet M, Fukushima N, Johnson MR, Horsewill AJ, Trommsdorff HP (2001) The vibrational spectrum of crystalline benzoic acid: inelastic neutron scattering and density functional theory calculations. J Chem Phys 115:3241

    Article  CAS  Google Scholar 

  12. Zbiri M, Johnson MR, Mutka H, Payen C, Schober H (2010) Phonon control of magnetic relaxation in the pyrochlore slab SCGO through rocking motion of the Kagome-plane triangles. Phys Rev B81:104414

    Article  Google Scholar 

  13. Johnson MR, Koza MM, Capogna L, Mutka H (2009) Probing coupling between ‘rattling’ and extended lattice modes using time-of-flight neutron scatteringcombinedwith ab-initio calculations—introducing the PALD method. Nucl Instr Meth A 600:226–228

    Article  CAS  Google Scholar 

  14. Koza MM, Johnson MR, Viennois R, Mutka H, Girard L, Ravot D (2008) Breakdown of phonon glass paradigm in La- and Ce-filled skutterudites. Nat Mater 7:805–810

    Article  CAS  Google Scholar 

  15. Merzel F, Fontaine-Vive F, Johnson MR, Kearley GJ (2007) Atomistic model of DNA: phonons and base-pair opening. Phys Rev E 76:31917–31921

    Article  CAS  Google Scholar 

  16. Rog T, Murzyn K, Hinsen K, Kneller GR (2003) nMoldyn: a program package for neutron scattering oriented analysis of molecular dynamics simulations. J Comp Chem 24:657–667. http://dirac.cnrs-orleans.fr/plone/software/nmoldyn/ (Accessed 14 December 2011)

  17. Kneller GR, Calligari P (2006) Efficient characterization of protein secondary structure in terms of screw motions. Acta Cryst D62:302–311

    CAS  Google Scholar 

  18. Brooks BR, Janezic D, Karplus M (1994) Harmonic analysis of large systems. I. Methodology. J Comp Chem 16:1522

    Article  Google Scholar 

  19. Sniechowski M, Djurado D, Bee M, Gonzalez MA, Johnson MR, Rannou P, Dufour B, Luzny W (2005) Force field based molecular dynamics simulations in highly conducting compounds of poly(aniline). A comparison with quasi-elastic neutron scattering measurements. Chem Phys 317:289–297

    CAS  Google Scholar 

  20. Sun H (1998) COMPASS: an ab initio force field optimised for condensed phase application – overview with detail on alkane and benzene compounds. J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  21. Fouquet P, Johnson MR, Hedgeland H, Jardine AP, Ellis J, Allison W (2009) Molecular dynamics simulations of the diffusion of benzene sub-monolayer films on graphite basal plane surfaces. Carbon 47:2627

    Article  CAS  Google Scholar 

  22. Hedgeland H, Fouquet P, Jardine AP, Alexandrowicz G, Allison W, Ellis J (2009) Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nat Phys 5:561

    Article  CAS  Google Scholar 

  23. Fontaine-Vive F, Johnson MR, Kearley GJ, Cowan J, Howard JAK, Parker SF (2006) Phonon driven proton transfer in crystals with short strong hydrogen bonds. J Chem Phys 124:234503

    Article  CAS  Google Scholar 

  24. Cleland WW, Kreevoy MM (1994) Low barrier hydrogen bonds and enzymic catalysis. Science 264:1887–1890

    Article  CAS  Google Scholar 

  25. Trylska J, Grochowski P, McGammon JA (2004) The role of hydrogen bonding in enzymatic reaction catalysed by HIV-1 protease. Protein Sci 13:513–528

    Article  CAS  Google Scholar 

  26. VASP. http://cms.mpi.univie.ac.at/vasp/

  27. CASTEP. http://www.castep.org/

  28. ABINIT. http://www.abinit.org/

  29. Gaussian. http://www.gaussian.com/

  30. CHARMM. http://www.charmm.org/

  31. AMBER. http://ambermd.org/

  32. NAMD. http://www.ks.uiuc.edu/Research/namd/

  33. DL_POLY. http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/

  34. Kohn W (1996) Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett 76:3168–3171

    Article  CAS  Google Scholar 

  35. Siesta. http://www.xmarks.com/site/www.uam.es/departamentos/ciencias/fismateriac/siesta/

  36. Hine NDM, Haynes PD, Mostofi AA, Skylaris C-K, Payne MC (2009) Linear-scaling density-functional theory with tens of thousands of atoms: expanding the scope and scale of calculations with ONETEP. Comput Phys Commun 180:1041. http://www2.tcm.phy.cam.ac.uk/onetep/ (Accessed on 3 December 2011)

    Article  CAS  Google Scholar 

  37. GULP. http://projects.ivec.org/gulp/

  38. Fontaine-Vive F, Merzel F, Johnson MR, Kearley GJ (2009) Collagen and component polypeptides: low frequency and amide vibrations. Chem Phys 355:141–148

    Article  CAS  Google Scholar 

  39. McStas. http://neutron.risoe.dk/

  40. Farhi E, Hugouvieux V, Johnson MR, Kob W (2009) Virtual experiments: combining realistic neutron scattering instrument and sample simulations. J Comp Phys 228:5251–5261

    Article  CAS  Google Scholar 

  41. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and Methods. Proc Cambridge Phil Soc 24:89–110

    Article  CAS  Google Scholar 

  42. Fock V (1930) Z Physik 61:126

    Article  Google Scholar 

  43. Middendorf HD, Hayward RL, Parker SF, Bradshaw J, Miller A (1995) Vibrational neutron spectroscopy of collagen and model polypeptides. Biophys J 69:660–673

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnson, M.R., González, M.A., Zbiri, M., Pellegrini, E. (2012). Computational Tools to Understand Inelastic and Quasielastic Neutron Scattering Data. In: García Sakai, V., Alba-Simionesco, C., Chen, SH. (eds) Dynamics of Soft Matter. Neutron Scattering Applications and Techniques. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0727-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0727-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0726-3

  • Online ISBN: 978-1-4614-0727-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics