Advertisement

Peritoneal Dialysis Solutions

Chapter

Abstract

>PD has traditionally been performed with acidic solutions containing glucose as osmotic and lactate as buffer agent. These solutions confer marked local and systemic toxicity (Fig. 12.1). Within few years, the peritoneal membrane undergoes profound morphological transformations including progressive mesothelial denudation, submesothelial fibrosis, hyaline vasculopathy, and neoangiogenesis [1]. Hypervascularization of the peritoneal membrane results in increased solute clearance, but also in rapid glucose uptake and thus ultrafiltration loss and eventually PD failure [2]. Peritonitis episodes, chronic inflammation, and a persistently elevated calcium* phosphate product further accelerate membrane transformation, which in severe cases results in life-threatening, encapsulating peritoneal sclerosis. Even though most patients will not develop these complications if early transplantation is available, they still represent a major clinical problem on a global scale as reflected by the limited long-term technique and patient survival [3].

Keywords

Peritoneal dialysis solution Fluid composition biocompatible PD 

References

  1. 1.
    Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, GT Williams, Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13(2):470–9.PubMedGoogle Scholar
  2. 2.
    Yoshino A, Honda M, Fukuda M, Araki Y, Hataya H, Sakazume S, Tanaka Y, Kawamura K, Murai T, Kamiyama Y. Changes in peritoneal equilibration test values during long-term peritoneal dialysis in peritonitis-free children. Perit Dial Int. 2001;21(2):180–5.PubMedGoogle Scholar
  3. 3.
    Schaefer F, Klaus G, Müller-Wiefel DE, Mehls O, Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS). Current practice of peritoneal dialysis in children: results of a longitudinal survey. Perit Dial Int. 1999;19(Suppl 2):S445–9.PubMedGoogle Scholar
  4. 4.
    Davies SJ, Phillips L, Naish PF, Russell GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol. 2001;12(5):1046–51.PubMedGoogle Scholar
  5. 5.
    Witowski J, Korybalska K, Wisniewska J, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jörres A. Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol. 2000;11(4):729–39.PubMedGoogle Scholar
  6. 6.
    Inagi R, Miyata T, Yamamoto T, Suzuki D, Urakami K, Saito A, Van de Ypersele Strihou C, Kurokawa K. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 1999;463(3):260–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Jonasson P, Braide M. Kinetics and dose response of the effects of heated glucose peritoneal dialysis fluids on the respiratory burst of rat peritoneal leukocytes. ASAIO J. 2000;46(4):469–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmitt CP, von Heyl D, Rieger S, Arbeiter K, Bonzel KE, Fischbach M, Misselwitz J, Pieper AK, Schaefer F, Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS). Reduced systemic advanced glycation end products in children receiving peritoneal dialysis with low glucose degradation product content. Nephrol Dial Transplant. 2007;22(7):2038–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Shaw S, Akyol M, Bell J, Briggs JD, Dominiczak MH. Effects of continuous ambulatory peritoneal dialysis and kidney transplantation on advanced glycation endproducts in the skin and peritoneum. Cell Mol Biol (Noisy-le-grand). 1998;44(7):1061–8.Google Scholar
  10. 10.
    Frischmann M, Spitzer J, Fünfrocken M, Mittelmaier S, Deckert M, Fichert T, Pischetsrieder M. Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomed Chromatogr. 2009;23(8):843–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Erixon M, Wieslander A, Lindén T, Carlsson O, Forsbäck G, Svensson E, Jönsson JA, Kjellstrand P. How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int. 2006;26(4):490–7.PubMedGoogle Scholar
  12. 12.
    Schmitt CP, Haraldsson B, Doetschmann R, Zimmering M, Greiner C, Böswald M, Klaus G, Passlick-Deetjen J, Schaefer F. Effects of pH-neutral, bicarbonate-buffered dialysis fluid on peritoneal transport kinetics in children. Kidney Int. 2002;61(4): 1527–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int. 1995;47:282–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Breborowicz A, Rodela H, Martis L, Oreopoulos DG. Intracellular glutathione in human peritoneal mesothelial cells exposed in vitro to dialysis fluid. Int J Artif Organs. 1996;19:268–75.PubMedGoogle Scholar
  15. 15.
    Zareie M, Hekking LH, Welten AG, Driesprong BA, Schadee-Eestermans IL, Faict D, Leyssens A, Schalkwijk CG, Beelen RH, Ter Wee PM, Van Den Born J. Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant. 2003;18: 2629–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Plum J, Razeghi P, Lordnejad RM, Perniok A, Fleisch M, Fussholler A, Schneider M, Grabensee B. Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells. Am J Kidney Dis. 2001;38(4): 867–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Ogata S, Mori M, Tatsukawa Y, Kiribayashi K, Yorioka N. Expression of vascular endothelial growth factor, fibroblast growth factor, and lactate dehydrogenase by human peritoneal mesothelial cells in solutions with lactate or bicarbonate or both. Adv Perit Dial. 2006;22:37–40.PubMedGoogle Scholar
  18. 18.
    Thongboonkerd V, Lumlertgul D, Supajatura V. Better correction of metabolic acidosis, blood pressure control, and phagocytosis with bicarbonate compared to lactate solution in acute peritoneal dialysis. Artif Organs. 2001;25(2):99–108.PubMedCrossRefGoogle Scholar
  19. 19.
    Kierdorf HP, Leue C, Arns S. Lactate- or bicarbonate-buffered solutions in continuous extracorporeal renal replacement therapies. Kidney Int Suppl. 1999;72: S32–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Dorval M, Legault L, Lessard F, Roy L. Practical aspects of the addition of sodium bicarbonate to peritoneal dialysate. Perit Dial Int. 2000;20(6):791–3.PubMedGoogle Scholar
  21. 21.
    Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol. 2003;14(10):2632–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Otte K, Gonzalez MT, Bajo MA, del Peso G, Heaf J, Garcia Erauzkin G, Sanchez Tomero JA, Dieperink H, Povlsen J, Hopwood AM, Divino Filho JC, Faict D. Clinical experience with a new bicarbonate (25 mmol/L)/lactate (10 mmol/L) peritoneal dialysis solution. Perit Dial Int. 2003;23(2):138–45.PubMedGoogle Scholar
  23. 23.
    Feriani M, Carobi C, La Greca G, Buoncristiani U, Passlick-Deetjen J. Clinical experience with a 39 mmol/L bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int. 1997;17(1):17–21.PubMedGoogle Scholar
  24. 24.
    van Westrhenen R, Zweers MM, Kunne C, de Waart DR, van der Wal AC, Krediet RT. A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution. Perit Dial Int. 2008;28(5):487–96.PubMedGoogle Scholar
  25. 25.
    Nakayama M, Kasai K, Imai H, TRM-280 Study Group. Novel low Na peritoneal dialysis solutions designed to optimize Na gap of effluent: kinetics of Na and water removal. Perit Dial Int. 2009;29(5): 528–35.PubMedGoogle Scholar
  26. 26.
    Davies S, Carlsson O, Simonsen O, Johansson AC, Venturoli D, Ledebo I, Wieslander A, Chan C, Rippe B. The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transplant. 2009;24(5):1609–17. Epub 2009 Jan 14.PubMedCrossRefGoogle Scholar
  27. 27.
    Weinreich T, Passlick-Deetjen J, Ritz E, The Peritoneal Dialysis Multicenter Study Group. Low dialysate calcium in continuous ambulatory peritoneal dialysis: a randomized controlled multicenter trial. Am J Kidney Dis. 1995;25(3):452–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Wei M, Esbaei K, Bargman J, Oreopoulos DG. Relationship between serum magnesium, parathyroid hormone, and vascular calcification in patients on dialysis: a literature review. Perit Dial Int. 2006;26(3): 366–73.PubMedGoogle Scholar
  29. 29.
    Navarro-González JF, Mora-Fernández C, García-Pérez J. Clinical implications of disordered magnesium homeostasis in chronic renal failure and dialysis. Semin Dial. 2009;22(1):37–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Witowski J, Jorres A. Peritoneal dialysis: a biological membrane with a nonbiological fluid. Contrib Nephrol. 2009;163:27–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Kazancioglu R. Peritoneal defense mechanisms – the effects of new peritoneal dialysis solutions. Perit Dial Int. 2009;29(Suppl 2):S198–201.PubMedGoogle Scholar
  32. 32.
    Topley N, Kaur D, Petersen MM, Jörres A, Passlick-Deetjen J, Coles GA, Williams JD. Biocompatibility of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int. 1996;49(5):1447–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Do JY, Kim YL, Park JW, Chang KA, Lee SH, Ryu DH, Kim CD, Park SH, Yoon KW. The association between the vascular endothelial growth factor-to-cancer antigen 125 ratio in peritoneal dialysis effluent and the epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis. Perit Dial Int. 2008;28(Suppl 3):S101–6.PubMedGoogle Scholar
  34. 34.
    Cooker LA, Luneburg P, Holmes CJ, Jones S, Topley N, Bicarbonate/Lactate Study Group. Interleukin-6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit Dial Int. 2001;21(Suppl. 3):102–7.Google Scholar
  35. 35.
    Mortier S, Lameire NH, De Vriese AS. The effects of peritoneal dialysis solutions on peritoneal host defense. Perit Dial Int. 2004;24(2):123–38.PubMedGoogle Scholar
  36. 36.
    Mortier S, Faict D, Gericke M, Lameire N, De Vriese A. Effects of new peritoneal dialysis solutions on leukocyte recruitment in the rat peritoneal membrane. Nephron Exp Nephrol. 2005;101(4):e139–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 2004;66(3):1257–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Mortier S, De Vriese AS, Van de Voorde J, Schaub TP, Passlick-Deetjen J, Lameire NH. Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. J Am Soc Nephrol. 2002;13(2):480–9.PubMedGoogle Scholar
  39. 39.
    Mortier S, Faict D, De Lameire NH, Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 2005;67(4):1559–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J, Euro Balance Trial Group. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 2004;66(1):408–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 2003;63(1):298–305.PubMedCrossRefGoogle Scholar
  42. 42.
    Weiss L, Stegmayr B, Malmsten G, Tejde M, Hadimeri H, Siegert CE, Ahlmén J, Larsson R, Ingman B, Simonsen O, van Hamersvelt HW, Johansson AC, Hylander B, Mayr M, Nilsson PH, Andersson PO, De los Ríos T. Biocompatibility and tolerability of a purely bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int. 2009;29(6):647–55.PubMedGoogle Scholar
  43. 43.
    Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen FD, Bro S, Friedberg M, Wieslander A. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 2001;59(1):348–57.PubMedCrossRefGoogle Scholar
  44. 44.
    Tranaeus A, The Bicarbonate/Lactate Study Group. A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution – clinical benefits. Perit Dial Int. 2000;20(5):516–23.PubMedGoogle Scholar
  45. 45.
    Montenegro J, Saracho RM, Martínez IM, Muñoz RI, Ocharan JJ, Valladares E. Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions. Perit Dial Int. 2006;26(1):89–94.PubMedGoogle Scholar
  46. 46.
    Kim SG, Kim S, Hwang YH, Kim K, Oh JE, Chung W, Oh KH, Kim HJ, Ahn C, Korean Balnet Study Group. Could solutions low in glucose degradation products preserve residual renal function in incident peritoneal dialysis patients? A 1-year multicenter prospective randomized controlled trial (Balnet Study). Perit Dial Int. 2008;28(Suppl 3):S117–22.PubMedGoogle Scholar
  47. 47.
    Haag-Weber M, Krämer R, Haake R, Islam MS, Prischl F, Haug U, Nabut JL, Deppisch R, DIUREST Study Group. Low-GDP fluid (Gambrosol trio(R)) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol Dial Transplant. 2010;25:2288–96.PubMedCrossRefGoogle Scholar
  48. 48.
    Müller-Krebs S, Kihm LP, Zeier B, Gross ML, Deppisch R, Wieslander A, Henle T, Penndorf I, Oh J, Reiser J, Nawroth PP, Zeier M. Schwenger V. Eur J Clin Invest: Renal toxicity mediated by glucose degradation products in a rat model of advanced renal failure; 2008.Google Scholar
  49. 49.
    Ho-dac-Pannekeet MM, Weiss MF, de Waart DR, Erhard P, Hiralall JK, Krediet RT. Analysis of non enzymatic glycosylation in vivo: impact of different dialysis solutions. Perit Dial Int. 1999;19(Suppl 2): 68–74.Google Scholar
  50. 50.
    Posthuma N, ter Wee PM, Niessen H, Donker AJ, Verbrugh HA, Schalkwijk CG. Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Perit Dial Int. 2001;21: 43–51.PubMedGoogle Scholar
  51. 51.
    Mactier RA, Sprosen TS, Gokal R, Williams PF, Lindbergh M, Naik RB, Wrege U, Gröntoft KC, Larsson R, Berglund J, Tranaeus AP, Faict D. Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int. 1998;53(4):1061–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Fischbach M, Terzic J, Chauvé S, Laugel V, Muller A, Haraldsson B. Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrol Dial Transplant. 2004;19(4):925–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Montenegro J, Saracho R, Gallardo I, Martínez I, Muñoz R, Quintanilla N. Use of pure bicarbonate-buffered peritoneal dialysis fluid reduces the incidence of CAPD peritonitis. Nephrol Dial Transplant. 2007;22(6):1703–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Furkert J, Zeier M, Schwenger V. Effects of peritoneal dialysis solutions low in GDPs on peritonitis and exit-site infection rates. Perit Dial Int. 2008;28(6):637–40.PubMedGoogle Scholar
  55. 55.
    Han SH, Ahn SV, Yun JY, Tranaeus A, Han DS. Mortality and technique failure in peritoneal dialysis patients using advanced peritoneal dialysis solutions. Am J Kidney Dis. 2009;54(4):711–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee HY, Choi HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Kim MJ, Shin SK. Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant. 2006;21(10):2893–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Moberly JB, Mujais S, Gehr T, Hamburger R, Sprague S, Kucharski A, Reynolds R, Ogrinc F, Martis L, Wolfson M. Pharmacokinetics of icodextrin in peritoneal dialysis patients. Kidney Int Suppl. 2002;81:S23–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Posthuma N, ter Wee PM, Donker AJ, Oe PL, Peers EM, Verbrugh HA, The Dextrin in APD in Amsterdam (DIANA) Group. Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. Perit Dial Int. 2000;20(Suppl 2): S106–13.PubMedGoogle Scholar
  59. 59.
    Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, Bosselmann HP, Heimbürger O, Simonsen O, Davenport A, Tranaeus A, Divino Filho JC. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol. 2003;14(9):2338–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, Nash K, Sorkin M, Mujais S. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol. 2005;16(2): 546–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Konings CJ, Kooman JP, Schonck M, Gladziwa U, Wirtz J, van den Wall Bake AW, Gerlag PG, Hoorntje SJ, Wolters J, van der Sande FM, Leunissen KM. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int. 2003;63(4):1556–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Woodrow G, Oldroyd B, Stables G, Gibson J, Turney JH, Brownjohn AM. Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant. 2000;15(6):862–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Bredie SJ, Bosch FH, Demacker PN, Stalenhoef AF, van Leusen R. Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Perit Dial Int. 2001;21(3):275–81.PubMedGoogle Scholar
  64. 64.
    Babazono T, Nakamoto H, Kasai K, Kuriyama S, Sugimoto T, Nakayama M, Hamada C, Furuya R, Hasegawa H, Kasahara M, Moriishi M, Tomo T, Miyazaki M, Sato M, Yorioka N, Kawaguchi Y, Japanese Extraneal Collaborated Study Group. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am J Nephrol. 2007;27(4):409–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Davies SJ, Brown EA, Frandsen NE, Rodrigues AS, Rodriguez-Carmona A, Vychytil A, Macnamara E, Ekstrand A, Tranaeus A, Filho JC, EAPOS Group. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int. 2005;67(4):1609–15.PubMedCrossRefGoogle Scholar
  66. 66.
    Say T, Oymak O, Inanc MT, Dogan A, Tokgoz B, Utas C. Effects of twice-daily icodextrin administration on blood pressure and left ventricular mass in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int. 2009;29(4):443–9.Google Scholar
  67. 67.
    Martis L, Patel M, Giertych J, Mongoven J, Taminne M, Perrier MA, Mendoza O, Goud N, Costigan A, Denjoy N, Verger C, Owen Jr WF. Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet. 2005;365 (9459):588–94.PubMedGoogle Scholar
  68. 68.
    Adam FU, Singan M, Ozelsancak R, Torun D, Ozdemir FN, Haberal M. Icodextrin-associated sterile peritonitis: a recent outbreak in Turkey. Perit Dial Int. 2007;27(5):598–9.PubMedGoogle Scholar
  69. 69.
    Anderstam B, García-López E, Heimbürger O, Lindholm B. Determination of alpha-amylase activity in serum and dialysate from patients using icodextrin-based peritoneal dialysis fluid. Perit Dial Int. 2003;23(2):146–50.PubMedGoogle Scholar
  70. 70.
    Schalkwijk CG, ter Wee PM, Teerlink T. Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluids and PD fluids based on glucose polymers or amino acids. Perit Dial Int. 2000;20(6):796–8.PubMedGoogle Scholar
  71. 71.
    Bender TO, Witowski J, Aufricht C, Endemann M, Frei U, Passlick-Deetjen J, Jörres A. A Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis. Pediatr Nephrol. 2008;23(9): 1537–43.PubMedCrossRefGoogle Scholar
  72. 72.
    Reimann D, Dachs D, Meye C, Gross P. Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int. 2004;24(4): 378–84.PubMedGoogle Scholar
  73. 73.
    Tjiong HL, Zijlstra FJ, Rietveld T, Wattimena JL, Huijmans JG, Swart GR, Fieren MW. Peritoneal protein losses and cytokine generation in automated peritoneal dialysis with combined amino acids and glucose solutions. Mediators Inflamm. 2007;2007:97272.PubMedCrossRefGoogle Scholar
  74. 74.
    Qamar IU, Secker D, Levin L, Balfe JA, Zlotkin S, Balfe JW. Effects of amino acid dialysis compared to dextrose dialysis in children on continuous cycling peritoneal dialysis. Perit Dial Int. 1999;19(3): 237–47.PubMedGoogle Scholar
  75. 75.
    Li FK, Chan LY, Woo JC, Ho SK, Lo WK, Lai KN, Chan TM. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis. 2003;42(1):173–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Dombros NV, Prutis K, Tong M, Anderson GH, Harrison J, Sombolos K, Digenis G, Pettit J, Oreopoulos DG. Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients – no effect on nutritional status. Perit Dial Int. 1990;10(1):79–84.PubMedGoogle Scholar
  77. 77.
    Tjiong HL, van den Berg JW, Wattimena JL, Rietveld T, van Dijk LJ, van der Wiel AM, van Egmond AM, Fieren MW, Swart R. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol. 2005;16(5):1486–93.PubMedCrossRefGoogle Scholar
  78. 78.
    Tjiong HL, Rietveld T, Wattimena JL, van den Berg JW, Kahriman D, van der Steen J, Hop WC, Swart R, Fieren MW. Peritoneal dialysis with solutions containing amino acids plus glucose promotes protein synthesis during oral feeding. Clin J Am Soc Nephrol. 2007;2(1):74–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Vande Walle J, Raes A, Dehoorne J, Mauel R, Dejaeghere A, Matthys D. Combined amino-acid and glucose peritoneal dialysis solution for children with acute renal failure. Adv Perit Dial. 2004;20:226–30.PubMedGoogle Scholar
  80. 80.
    Brem AS, Maaz D, Shemin DG, Wolfson M. Use of amino acid peritoneal dialysate for one year in a child on CCPD. Perit Dial Int. 1996;16(6):634–6.PubMedGoogle Scholar
  81. 81.
    Canepa A, Carrea A, Menoni S, Verrina E, Trivelli A, Gusmano R, Perfumo F. Acute effects of simultaneous intraperitoneal infusion of glucose and amino acids. Kidney Int. 2001;59(5):1967–73. s.o.: Qamar IU et al PDI1999.PubMedCrossRefGoogle Scholar
  82. 82.
    Canepa A, Verrina E, Perfumo F. Use of new peritoneal dialysis solutions in children. Kidney Int Suppl. 2008;108:S137–44.PubMedCrossRefGoogle Scholar
  83. 83.
    le Poole CY, Welten AG, Weijmer MC, Valentijn RM, van Ittersum FJ, ter Wee PM. Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int. 2005;25(Suppl 3): S64–8.PubMedGoogle Scholar
  84. 84.
    le Poole CY, van Ittersum FJ, Weijmer MC, Valentijn RM, ter Wee PM. Clinical effects of a peritoneal dialysis regimen low in glucose in new peritoneal dialysis patients: a randomized crossover study. Adv Perit Dial. 2004;20:170–6.PubMedGoogle Scholar
  85. 85.
    Vande Walle JG, Raes AM, Dehoorne J, Mauel R. Use of bicarbonate/lactate-buffered dialysate with a nighttime cycler, associated with a daytime dwell with icodextrin, may result in alkalosis in children. Adv Perit Dial. 2004;20:222–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of General PediatricsCenter for Pediatric and Adolescent Medicine, Pediatric Nephrology DivisionHeidelbergGermany

Personalised recommendations