Skip to main content

On the Geometry of Global Function Fields, the Riemann–Roch Theorem, and Finiteness Properties of S-Arithmetic Groups

  • Conference paper
  • First Online:
Buildings, Finite Geometries and Groups

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 10))

  • 875 Accesses

Abstract

In this survey I sketch Behr–Harder reduction theory for reductive groups over global functions fields and briefly describe its applicability in the theory of S-arithmetic groups, notably homological and isoperimetric properties.

Subject Classifications: MSC 2010: Primary 20-02 Secondary 11F75, 14L15, 20G30, 20G35, 20J06, 51E24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peter Abramenko and Kenneth S. Brown. Buildings – Theory and Applications, vol. 248 of Graduate Texts in Mathematics. Springer, Berlin. 2008.

    Google Scholar 

  2. Peter Abramenko. Twin buildings and applications to S-arithmetic groups, vol. 1641 of Lecture Notes in Mathematics. Springer, Berlin. 1996.

    Google Scholar 

  3. J. Vernon Armitage. Algebraic functions and an analogue of the geometry of numbers: the Riemann–Roch theorem. Arch. Math. (1967), pp. 383–393.

    Google Scholar 

  4. Emil Artin and George Whaples. Axiomatic characterization of fields by the product formula for valuations. Bull. Amer. Math. Soc. (1945), pp. 469–492.

    Google Scholar 

  5. Helmut Behr. Arithmetic groups over function fields I. J. reine angew. Math. 495 (1998), pp. 79–118.

    Google Scholar 

  6. Helmut Behr. Higher finiteness properties of S-arithmetic groups in the function field case I. In Groups: topological, combinatorial and arithmetic aspects (edited by Thomas W. Müller), pp. 27–42. Cambridge University Press, Cambridge. 2004.

    Google Scholar 

  7. Kai-Uwe Bux and Ralf Gramlich and Stefan Witzel. Finiteness properties of Chevalley groups over a polynomial ring over a finite field. arXiv:0908.4531. 2009.

    Google Scholar 

  8. Kai-Uwe Bux and Ralf Gramlich and Stefan Witzel. Higher finiteness properties of reductive arithmetic groups in positive characteristic: the rank theorem. arXiv:1102.0428 2011.

    Google Scholar 

  9. Armand Borel, Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. Math. 75 (1962), pp. 485–535.

    Google Scholar 

  10. Martin Bridson, André Haefliger. Metric spaces of non-positive curvature. Springer, Berlin. 1999.

    Google Scholar 

  11. Armand Borel. Linear Algebraic Groups. Springer, Berlin. 1991.

    Google Scholar 

  12. Kenneth S. Brown. Finiteness properties of groups. J. Pure Appl. Algebra 44 (1987), pp. 45–75.

    Google Scholar 

  13. Kenneth S. Brown. Buildings. Springer, Berlin. 1989.

    Google Scholar 

  14. Armand Borel, Jean-Pierre Serre. Cohomologie d’immeubles et de groupes S-arithmétiques. Topology 15 (1976), pp. 211–232.

    Google Scholar 

  15. Kai-Uwe Bux, Kevin Wortman. Finiteness properties of arithmetic groups over function fields. Invent. math. 167 (2007), pp. 335–378.

    Google Scholar 

  16. Kai-Uwe Bux, Kevin Wortman. Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups. arXiv:0808.2087v1. 2008.

    Google Scholar 

  17. Claude Chevalley. Introduction to the theory of algebraic functions of one variable. American Mathematical Society, New York. 1951.

    Google Scholar 

  18. Michel Demazure, Alexandre Grothendieck (editors). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes, Tome 1. Springer, Berlin. 1970.

    Google Scholar 

  19. Michel Demazure, Alexandre Grothendieck (editors). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes, Tome 3. Springer, Berlin. 1970.

    Google Scholar 

  20. David Eisenbud. Commutative algebra. Springer, Berlin. 1995.

    Google Scholar 

  21. Alexandre Grothendieck. Sur la classification des fibrés sur la sphère de Riemann. Amer. J. Math. 79 (1957), pp. 121–138.

    Google Scholar 

  22. Alexandre Grothendieck. Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. 4 (1960), pp. 5–228.

    Google Scholar 

  23. Günter Harder. Halbeinfache Gruppenschemata über vollständigen Kurven. Invent. math. 6 (1968), pp. 107–149.

    Google Scholar 

  24. Günter Harder. Minkowskische Reduktionstheorie über Funktionenkörpern. Invent. math. 7 (1969), pp. 33–54.

    Google Scholar 

  25. Günter Harder. Chevalley groups over function fields and automorphic forms. Ann. of Math. 100 (1974), pp. 249–306.

    Google Scholar 

  26. Günter Harder. Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern. Invent. math. 42 (1977), pp. 135–175.

    Google Scholar 

  27. Robin Hartshorne. Algebraic geometry. Springer, Berlin. 1977.

    Google Scholar 

  28. Günter Harder. Lectures on Algebraic Geometry I. Vieweg, Wiesbaden. 2008.

    Google Scholar 

  29. James E. Humphreys. Linear Algebraic Groups. Springer. 1975.

    Google Scholar 

  30. Jens Carsten Jantzen. Representations of algebraic groups. American Mathematical Society. 2003.

    Google Scholar 

  31. Gérard Laumon. Cohomology of Drinfeld modular varieties. Part II: automorphis forms, trace formulas and Langlands correspondence. Cambridge University Press, Cambridge. 1997.

    Google Scholar 

  32. Qing Liu. Algebraic Geometry and Arithmetic Curves. Oxford University Press, Oxford. 2002.

    Google Scholar 

  33. Harald Niederreiter and Chaoping Xing. Algebraic geometry in coding theory and cryptography. Princeton University Press, Princeton. 2009.

    Google Scholar 

  34. Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory, vol. 139 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA. 1994.

    Google Scholar 

  35. Michael Rosen. Number theory in function fields. Springer, Berlin. 2002.

    Google Scholar 

  36. Jean Pierre Serre. Faisceaux algébriques coherents. Ann. Math. 61 (1955), pp. 197–278.

    Google Scholar 

  37. Jean Pierre Serre. Algebraic groups and class fields. Springer, Berlin. 1988.

    Google Scholar 

  38. Jean Pierre Serre. Trees. Springer, Berlin. Corrected second printing. 2003.

    Google Scholar 

  39. Tonny A. Springer. Linear Algebraic Groups. Birkhäuser, Basel. 1998.

    Google Scholar 

  40. Ulrich Stuhler. Homological properties of certain arithmetic groups in the function field case. Invent. Math. 57 (1980), pp. 263–281.

    Google Scholar 

  41. Tsuneo Tamagawa. Adèles. In Algebraic groups and discontinuous subgroups, pp. 113–121. American Mathematical Society, Providence. 1966.

    Google Scholar 

  42. Valentin Voskresenskiĭ. Algebraic groups and their birational invariants, vol. 179 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI. 1998.

    Google Scholar 

  43. William C. Waterhouse. Introduction to affine group schemes. Springer, Berlin. 1979.

    Google Scholar 

  44. André Weil. Adèles and algebraic groups. Birkhäuser, Basel. 1982.

    Google Scholar 

  45. André Weil. Basic number theory. Springer, Berlin. 1995.

    Google Scholar 

  46. Richard Weiss. The structure of spherical buildings. Princeton University Press, Princeton. 2003.

    Google Scholar 

  47. Richard Weiss. The structure of affine buildings. Princeton University Press, Princeton. 2009.

    Google Scholar 

  48. Stefan Witzel. Finiteness properties of Chevalley groups over a Laurent polynomial ring over a finite field. arXiv:1007.5216. 2010.

    Google Scholar 

  49. Kevin Wortman. Isoperimetric and finiteness properties of arithmetic groups. Oberwolfach Reports, to appear, http://www.mfo.de/programme/schedule/2010/17/OWR_2010_20.pdf. 2010.

  50. Oscar Zariski and Pierre Samuel. Commutative algebra, volume 2. Springer, Berlin. 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Köhl né Gramlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gramlich, K.n. (2012). On the Geometry of Global Function Fields, the Riemann–Roch Theorem, and Finiteness Properties of S-Arithmetic Groups. In: Sastry, N. (eds) Buildings, Finite Geometries and Groups. Springer Proceedings in Mathematics, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0709-6_4

Download citation

Publish with us

Policies and ethics