Advertisement

On a Class of c.F4-Geometries

  • Antonio Pasini
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 10)

Abstract

This paper is a survey of the work done by a number of authors on the classification of flag-transitive geometries with diagram and orders as below:

Diagram geometry Circular extensions Buildings Finite simple groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aschbacher. Flag structures in Tits geometries, Geom. Dedicata 14 (1983), 21–32Google Scholar
  2. 2.
    F. Buekenhout and A. M. Cohen. Diagram Geometry, unpublished book available at http://www.win.tue.nl/~amc/buek/
  3. 3.
    F. Buekenhout and X. Hubaut. Locally polar spaces and related rank 3-groups, J. Algebra 45 (1977), 391–434MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    A. M. Cohen e B. N. Cooperstein. The 2-spaces of the standard E 6-module, Geom. Dedicata 25 (1988), 467–480Google Scholar
  5. 5.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. Atlas of Finite Groups, Clarendon, Oxford 1985MATHGoogle Scholar
  6. 6.
    H. Cuypers. Extended near hexagons and line systems, Adv. Geometry 4 (2004), 181–214Google Scholar
  7. 7.
    H. Cuypers and A. Pasini. Locally polar geometries with affine planes, European J. Combin. 13 (1992), 39–57Google Scholar
  8. 8.
    A. Del Fra, D. Ghinelli, T. Meixner and A. Pasini. Flag-transitive extensions of C n geometries, Geom. Dedicata 37 (1990), 253–273Google Scholar
  9. 9.
    A. A. Ivanov. A geometric characterization of Fischer’s Baby Monster, J. Algebraic Combin. 1 (1992), 43–65Google Scholar
  10. 10.
    A. A. Ivanov. Exceptional extended dual polar spaces, European J. Combin. 18 (1997), 859–885Google Scholar
  11. 11.
    A. A. Ivanov. Affine extended dual polar spaces, in Groups and Geometries (L. Di Martino et al. ed.), Brikhäuser, Basel (1998), 107–121Google Scholar
  12. 12.
    A. A. Ivanov and D. V. Pasechnik. c-extendions of the F 4(2)-building, Discr. Math. 264 (2003), 91–110Google Scholar
  13. 13.
    A. A. Ivanov and A. Pasini. A diameter dound for extensions of the F 4(2)-buildings, European J. Combin. 24 (2003), 685–707Google Scholar
  14. 14.
    A. A. Ivanov and S. V. Shpectorov. Geometry of Sporadic Groups II. Representations and Amalgams, Cambridge Univ. Press, Cambridge 2002Google Scholar
  15. 15.
    A. A. Ivanov and C. Wiedorn. More geometries of the Fischer group Fi 22, J. Algebraic Combin. 16 (2002), 111–150Google Scholar
  16. 16.
    A. A. Ivanov, D. V. Pasechnik and S. V. Shpectorov. Extended F 4-buildings and the Baby Monster, Invent. Math. 144 (2001), 399–433Google Scholar
  17. 17.
    A. Kasikova and E. E. Shult. Absolute embeddings of point-line geometries, J. Algebra 238 (2001), 265–291Google Scholar
  18. 18.
    A. Pasini. Covers of finite geometries with non-spherical minimal circuit diagram, in Buildings and the Geometry of Diagrams (L. A. Rosati ed.), Springer L. N. 1181, Springer, Berlin (1986), 218–241Google Scholar
  19. 19.
    A. Pasini. Diagram Geometries, Oxford Univ. Press, Oxford 2004Google Scholar
  20. 20.
    A. Pasini. Embeddings and expansions, Bull. Belgian Math. Soc. – Simon Stevin 10 (2003), 585–626Google Scholar
  21. 21.
    A. Pasini. Shrinkings, structures at infinity and affine expansions, with an application to c-extended P- and T-geometries, European J. Combin. 28 (2007), 592–612Google Scholar
  22. 22.
    A. Pasini and C. Wiedorn. Local parallelisms, shrinkings and geometries at infinity, in Topics in Diagram Geometry, Quaderni di Matematica 12, II Univ. of Naples (2003), 127–195Google Scholar
  23. 23.
    S. E. Rees. Finite C 3-geometries in which all lines are thin, Math. Z. 189 (1985), 263–171Google Scholar
  24. 24.
    G. Stroth. Flag transitive c. F 4(2)-geometries, Adv. Geom., to appearGoogle Scholar
  25. 25.
    G. Stroth and C. Wiedorn. c-extensions of P- and T-geometries, J. Cmbin. Th. A 93 (2001), 261–280Google Scholar
  26. 26.
    G. Stroth and C. Wiedorn. c-extensions of P- and T-geometries – a survey of known examples, in Topics in Diagram Geometry, Quaderni di Matematica 12, II Univ. of Naples (2003), 197–226Google Scholar
  27. 27.
    J. Tits. A local approach to buildings, in The Geometric Vein (C. Davis et al. ed.), Springer, Berlin (1981), 519–547Google Scholar
  28. 28.
    C. Wiedorn. Flag-transitive c-extensions of the F 4(2)-building – the amalgams, Euroepan J. Combin. 28 (2007), 641–652Google Scholar
  29. 29.
    S. Yoshiara. The flag-transitive C 3-geometries of finite order, J. Algebraic Combin. 5 (1996), 251–284Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SienaSienaItaly

Personalised recommendations