Skip to main content

Function of the Normal Hip

  • Chapter
  • First Online:
  • 536 Accesses

Abstract

The function and inherent stability of the hip are dependent upon the passive osseous and ligamentous structures of the joint and the activity of its musculotendinous structures. The purpose of this chapter is to review these general osseous and ligamentous support structures as well as the neuromuscular control strategies associated with normal hip joint function and mechanics. The musculoskeletal contributions to hip stability during gait will be provided in detail since these data largely represent the largest body of knowledge pertaining to hip function. In addition, this chapter will describe in vivo hip joint muscular strength, kinematics, and kinetics of many common sport motions, some of which have been linked to mechanisms of hip injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lavigne M, Parvizi J, Beck M, Siebenrock KA, Ganz R, Leunig M. Anterior femoroacetabular impingement: part I. Techniques of joint preserving surgery. Clin Orthop Relat Res. 2004;418:61–6.

    Article  Google Scholar 

  2. Ito K, Minka II MA, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br. 2001;83(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  3. Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84(4):556–60.

    Article  CAS  PubMed  Google Scholar 

  4. Crowninshield RD, Maloney WJ, Wentz DH, Humphrey SM, Blanchard CR. Biomechanics of large femoral heads: what they do and don’t do. Clin Orthop Relat Res. 2004;429:102–7.

    Article  Google Scholar 

  5. Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993;75(2):228–32.

    Article  CAS  PubMed  Google Scholar 

  6. Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. J Bone Joint Surg Am. 2003;85-A(2):278–86.

    Article  CAS  PubMed  Google Scholar 

  7. Siebenrock KA, Wahab KH, Werlen S, Kalhor M, Leunig M, Ganz R. Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res. 2004;418:54–60.

    Article  Google Scholar 

  8. Nordin JY, Attia D. [Fractures of the upper end of the femur in adults. Etiology, mechanism, diagnosis, development, prognosis, treatment]. Rev Prat. 1993;43(2):223–8.

    CAS  PubMed  Google Scholar 

  9. Fabry G, Cheng LX, Molenaers G. Normal and abnormal torsional development in children. Clin Orthop Relat Res. 1994;302:22–6.

    Google Scholar 

  10. Hapa O, Yuksel HY, Muratli HH, Aksahin E, Gulcek S, Celebi L, et al. Axial plane coverage and torsion measurements in primary osteoarthritis of the hip with good frontal plane coverage and spherical femoral head. Arch Orthop Trauma Surg. 2010;130(10):1305–10.

    Article  PubMed  Google Scholar 

  11. Anda S, Terjesen T, Kvistad KA. Computed tomography measurements of the acetabulum in adult dysplastic hips: which level is appropriate? Skeletal Radiol. 1991;20(4):267–71.

    Article  CAS  PubMed  Google Scholar 

  12. Anda S, Terjesen T, Kvistad KA, Svenningsen S. Acetabular angles and femoral anteversion in dysplastic hips in adults: CT investigation. J Comput Assist Tomogr. 1991;15(1):115–20.

    Article  CAS  PubMed  Google Scholar 

  13. Fredensborg N. The CE, angle of normal hips. Acta Orthop Scand. 1976;47(4):403–5.

    Article  CAS  PubMed  Google Scholar 

  14. Goodman SB. Comparison of radiographic parameters for analysis of normal and dysplastic hips in the adult. Contemp Orthop. 1990;20(5):505–11.

    CAS  PubMed  Google Scholar 

  15. Felson DT. Epidemiology of hip and knee osteoarthritis. Epidemiol Rev. 1988;10:1–28.

    Article  CAS  PubMed  Google Scholar 

  16. Lievense AM, Bierma-Zeinstra SM, Verhagen AP, Verhaar JA, Koes BW. Influence of hip dysplasia on the development of osteoarthritis of the hip. Ann Rheum Dis. 2004;63(6):621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCarthy JC, Noble PC, Schuck MR, Wright J, The LJ, Otto E. Aufranc Award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;393:25–37.

    Article  Google Scholar 

  18. Reijman M, Hazes JM, Pols HA, Koes BW, Bierma-Zeinstra SM. Acetabular dysplasia predicts incident osteoarthritis of the hip: the Rotterdam study. Arthritis Rheum. 2005;52(3):787–93.

    Article  CAS  PubMed  Google Scholar 

  19. Myers CA, Register BC, Lertwanich P, Ejnisman L, Pennington WW, Giphart JE, et al. Role of the acetabular labrum and the iliofemoral ligament in hip stability: an in vitro biplane fluoroscopy study. Am J Sports Med. 2011;39 Suppl:85S–91.

    Google Scholar 

  20. Fuss FK, Bacher A. New aspects of the morphology and function of the human hip joint ligaments. Am J Anat. 1991;192(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  21. Wasielewski R. The hip. 1998.

    Google Scholar 

  22. Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966;184(1):170–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hill A. First and last experiments in skeletal muscle mechanics. London: Cambridge University Press; 1970.

    Google Scholar 

  24. Hoffer JA, O’Donovan MJ, Pratt CA, Loeb GE. Discharge patterns of hindlimb motoneurons during normal cat locomotion. Science. 1981;213(4506):466–7.

    Article  CAS  PubMed  Google Scholar 

  25. Horowits R, Podolsky RJ. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol. 1987;105(5):2217–23.

    Article  CAS  PubMed  Google Scholar 

  26. Lieber RL, Brown CC. Quantitative method for comparison of skeletal muscle architectural properties. J Biomech. 1992;25(5):557–60.

    Article  CAS  PubMed  Google Scholar 

  27. Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.

    CAS  PubMed  Google Scholar 

  28. Zajac FE. How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design. J Hand Surg Am. 1992;17(5):799–804.

    Article  CAS  PubMed  Google Scholar 

  29. Torry MR, Schenker ML, Martin HD, Hogoboom D, Philippon MJ. Neuromuscular hip biomechanics and pathology in the athlete. Clin Sports Med. 2006;25(2):179–97. vii.

    Article  PubMed  Google Scholar 

  30. Mathew P, Torry MR. The effects of Opedix (TM) knee support system on lower extremity biomechanics during walking and jogging. Master’s Thesis, Illinois State University; 2014.

    Google Scholar 

  31. Anderson FC, Pandy MG. Dynamic optimization of human walking. J Biomech Eng. 2001;34:153–61.

    Article  CAS  Google Scholar 

  32. Arnold AS, Salinas S, Asakawa DJ, Delp SL. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg. 2000;5(2):108–19.

    Article  CAS  PubMed  Google Scholar 

  33. Correa TA, Baker R, Graham HK, Pandy MG. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. J Biomech. 2011;44(11):2096–105.

    Article  PubMed  Google Scholar 

  34. Correa TA, Crossley KM, Kim HJ, Pandy MG. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech. 2010;43(8):1618–22.

    Article  PubMed  Google Scholar 

  35. Correa TA, Pandy MG. On the potential of lower limb muscles to accelerate the body’s centre of mass during walking. Comput Methods Biomech Biomed Engin. 2013;16(9):1013–21.

    Article  PubMed  Google Scholar 

  36. Anderson FC, Pandy MG. Individual muscle contributions to support in normal walking. Gait Posture. 2003;17(2):159–69.

    Article  PubMed  Google Scholar 

  37. Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012;30(7):1133–9.

    Article  PubMed  Google Scholar 

  38. Wells C. Ancient lesions of the hip joint. Med Biol Illus. 1976;26(3):171–7.

    CAS  PubMed  Google Scholar 

  39. Woodburne RT. The accessory obturator nerve and the innervation of the pectineus muscle. Anat Rec. 1960;136:367–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lust G, Craig PH, Ross Jr GE, Geary JC. Studies on pectineus muscles in canine hip dysplasia. Cornell Vet. 1972;62(4):628–45.

    CAS  PubMed  Google Scholar 

  41. Decker M, Krong J, Peterson D, Torry M, Philippon M. Deep hip muscle function during gait. In: 56th annual meeting of the Orthopedic Research Society, New Orleans, LA, 6–9 Mar 2010.

    Google Scholar 

  42. Takebe K, Vitti M, Basmajian JV. Electromyography of pectineus muscle. Anat Rec. 1974;180(2):281–3.

    Article  CAS  PubMed  Google Scholar 

  43. Shelburne K, Decker M, Philippon M, Torry M. Muscle forces at the hip during squatting exercise. In: 56th annual meeting of the Orthopedic Research Society, New Orleans, LA, 6–9 Mar 2010.

    Google Scholar 

  44. Philippon MJ, Decker MJ, Giphart JE, Torry MR, Wahoff MS, LaPrade RF. Rehabilitation exercise progression for the gluteus medius muscle with consideration for iliopsoas tendinitis: an in vivo electromyography study. Am J Sports Med. 2011;39(8):1777–85.

    Article  PubMed  Google Scholar 

  45. Andersson E, Oddsson L, Grundstrom H, Thorstensson A. The role of the psoas and iliacus muscles for stability and movement of the lumbar spine, pelvis and hip. Scand J Med Sci Sports. 1995;5(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  46. Basmajian J, Greenlaw RK. EMG of iliacus and psoas with inserted fine-wire electrodes. Anat Rec. 1968;160:310–1.

    Google Scholar 

  47. LaBan MM, Raptou AD, Johnson EW. Electromyographic study of function of iliopsoas muscle. Arch Phys Med Rehabil. 1965;46(10):676–9.

    CAS  PubMed  Google Scholar 

  48. Nachemson A. Electromyographic studies on the vertebral portion of the psoas muscle; with special reference to its stabilizing function of the lumbar spine. Acta Orthop Scand. 1966;37(2):177–90.

    Article  CAS  PubMed  Google Scholar 

  49. Karlsson E, Jonsson B. Function of the gluteus maximus muscle. An electromyographic study. Acta Morphol Neerl Scand. 1965;6:161–9.

    CAS  PubMed  Google Scholar 

  50. Joseph J, Williams PL. Electromyography of certain hip muscles. J Anat. 1957;91(2):286–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Greenlaw RK. Function of the muscles about the hip during normal and level walking. Queen’s University, Canada; 1973.

    Google Scholar 

  52. Shelburne K, Decker M, Philippon M, Torry M. A musculoskeletal model of the hip for the calculation of muscle and joint loads during physical activity. In: 56th annual meeting of the Orthopedic Research Society, New Orleans, LA, 6–9 Mar 2010.

    Google Scholar 

  53. Wheatley MD, Jahnke WD. Electromyographic study of the superficial thigh and hip muscles in normal individuals. Arch Phys Med Rehabil. 1951;32(8):508–15.

    CAS  PubMed  Google Scholar 

  54. Carlsoo S, Fohlin L. The mechanics of the two-joint muscles rectus femoris, sartorius and tensor fasciae latae in relation to their activity. Scand J Rehabil Med. 1969;1(3):107–11.

    CAS  PubMed  Google Scholar 

  55. Goto Y, Kumamoto M, Okamoto T. Electromyographic study of the function of the muscles participating in thigh elevation in various planes. Res J Phys Educ. 1974;18:269–76.

    Google Scholar 

  56. Houtz SJ, Fischer FJ. An analysis of muscle action and joint excursion during exercise on a stationary bicycle. J Bone Joint Surg Am. 1959;41-A(1):123–31.

    Article  CAS  PubMed  Google Scholar 

  57. Heinert BL, Kernozek TW, Greany JF, Fater DC. Hip abductor weakness and lower extremity kinematics during running. J Sport Rehabil. 2008;17(3):243–56.

    Article  PubMed  Google Scholar 

  58. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–34.

    Article  PubMed  Google Scholar 

  59. Jensen RH, Smidt GL, Johnston RC. A technique for obtaining measurements of force generated by hip muscles. Arch Phys Med Rehabil. 1971;52(5):207–15.

    CAS  PubMed  Google Scholar 

  60. Kulig K, Andrews JG, Hay JG. Human strength curves. Exerc Sport Sci Rev. 1984;12:417–66.

    Article  CAS  PubMed  Google Scholar 

  61. Murray MP, Sepic SB. Maximum isometric torque of hip abductor and adductor muscles. Phys Ther. 1968;48(12):1327–35.

    CAS  PubMed  Google Scholar 

  62. Clark JM, Haynor DR. Anatomy of the abductor muscles of the hip as studied by computed tomography. J Bone Joint Surg Am. 1987;69(7):1021–31.

    Article  CAS  PubMed  Google Scholar 

  63. Thorborg K, Petersen J, Magnusson SP, Holmich P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand J Med Sci Sports. 2010;20(3):493–501.

    Article  CAS  PubMed  Google Scholar 

  64. Lindsay DM, Maitland M, Lowe RC, Kane TJ. Comparison of isokinetic internal and external hip rotation torques using different testing positions. J Orthop Sports Phys Ther. 1992;16(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  65. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J Appl Physiol. 1997;83(5):1581–7.

    CAS  PubMed  Google Scholar 

  66. May WW. Relative isometric force of the hip abductor and adductor muscles. Phys Ther. 1968;48(8):845–51.

    CAS  PubMed  Google Scholar 

  67. Neumann DA, Soderberg GL, Cook TM. Comparison of maximal isometric hip abductor muscle torques between hip sides. Phys Ther. 1988;68(4):496–502.

    Article  CAS  PubMed  Google Scholar 

  68. Brophy RH, Chiaia TA, Maschi R, Dodson CC, Oh LS, Lyman S, et al. The core and hip in soccer athletes compared by gender. Int J Sports Med. 2009;30(9):663–7.

    Article  CAS  PubMed  Google Scholar 

  69. Freter SH, Fruchter N. Relationship between timed ‘up and go’ and gait time in an elderly orthopaedic rehabilitation population. Clin Rehabil. 2000;14(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  70. Stryla W, Pogorzala AM, Rogala P, Nowakowski A. Algorithm of physical therapy exercises following total hip arthroplasty. Pol Orthop Traumatol. 2013;78:33–9.

    PubMed  Google Scholar 

  71. Vaz MD, Kramer JF, Rorabeck CH, Bourne RB. Isometric hip abductor strength following total hip replacement and its relationship to functional assessments. J Orthop Sports Phys Ther. 1993;18(4):526–31.

    Article  CAS  PubMed  Google Scholar 

  72. Philippon MJ. New frontiers in hip arthroscopy: the role of arthroscopic hip labral repair and capsulorrhaphy in the treatment of hip disorders. Instr Course Lect. 2006;55:309–16.

    PubMed  Google Scholar 

  73. Ferguson SJ, Bryant JT, Ganz R, Ito K. The acetabular labrum seal: a poroelastic finite element model. Clin Biomech (Bristol, Avon). 2000;15(6):463–8.

    Article  CAS  Google Scholar 

  74. Ferguson SJ, Bryant JT, Ganz R, Ito K. An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech. 2003;36(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kim JW, Kwon MS, Yenuga SS, Kwon YH. The effects of target distance on pivot hip, trunk, pelvis, and kicking leg kinematics in Taekwondo roundhouse kicks. Sports Biomech. 2010;9(2):98–114.

    Article  PubMed  Google Scholar 

  76. Philippon MJ. The role of arthroscopic thermal capsulorrhaphy in the hip. Clin Sports Med. 2001;20(4):817–29.

    Article  CAS  PubMed  Google Scholar 

  77. Guanche CA, Sikka RS. Acetabular labral tears with underlying chondromalacia: a possible association with high-level running. Arthroscopy. 2005;21(5):580–5.

    Article  PubMed  Google Scholar 

  78. Fredericson M, Cookingham CL, Chaudhari AM, Dowdell BC, Oestreicher N, Sahrmann SA. Hip abductor weakness in distance runners with iliotibial band syndrome. Clin J Sport Med. 2000;10(3):169–75.

    Article  CAS  PubMed  Google Scholar 

  79. Fredericson M, White JJ, Macmahon JM, Andriacchi TP. Quantitative analysis of the relative effectiveness of 3 iliotibial band stretches. Arch Phys Med Rehabil. 2002;83(5):589–92.

    Article  PubMed  Google Scholar 

  80. Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639–46.

    Article  PubMed  Google Scholar 

  81. Chaudhari AM, Andriacchi TP. The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury. J Biomech. 2006;39(2):330–8.

    Article  PubMed  Google Scholar 

  82. Byrd JW, Jones KS. Hip arthroscopy in athletes. Clin Sports Med. 2001;20(4):749–61.

    Article  CAS  PubMed  Google Scholar 

  83. L’Hermette M, Polle G, Tourny-Chollet C, Dujardin F. Hip passive range of motion and frequency of radiographic hip osteoarthritis in former elite handball players. Br J Sports Med. 2006;40(1):45–9. Discussion-9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Roach KE, Miles TP. Normal hip and knee active range of motion: the relationship to age. Phys Ther. 1991;71(9):656–65.

    Article  CAS  PubMed  Google Scholar 

  85. Spector TD, Harris PA, Hart DJ, Cicuttini FM, Nandra D, Etherington J, et al. Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum. 1996;39(6):988–95.

    Article  CAS  PubMed  Google Scholar 

  86. Kettunen JA, Kujala UM, Raty H, Videman T, Sarna S, Impivaara O, et al. Factors associated with hip joint rotation in former elite athletes. Br J Sports Med. 2000;34(1):44–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reid DC, Burnham RS, Saboe LA, Kushner SF. Lower extremity flexibility patterns in classical ballet dancers and their correlation to lateral hip and knee injuries. Am J Sports Med. 1987;15(4):347–52.

    Article  CAS  PubMed  Google Scholar 

  88. Yamanouchi T. EMG analysis of the lower extremities during pitching in high-school baseball. Kurume Med J. 1998;45(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  89. Fleisig GS, Barrentine SW, Escamilla RF, Andrews JR. Biomechanics of overhand throwing with implications for injuries. Sports Med. 1996;21(6):421–37.

    Article  CAS  PubMed  Google Scholar 

  90. Wilk KE, Meister K, Fleisig G, Andrews JR. Biomechanics of the overhead throwing motion. Sports Med Arthrosc Rev. 2000;8:124–34.

    Article  Google Scholar 

  91. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology part III: the SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy. 2003;19(6):641–61.

    Article  PubMed  Google Scholar 

  92. Sisto DJ, Jobe FW. The operative treatment of scapulothoracic bursitis in professional pitchers. Am J Sports Med. 1986;14(3):192–4.

    Article  CAS  PubMed  Google Scholar 

  93. Stull JD, Philippon MJ, LaPrade RF. “At-risk” positioning and hip biomechanics of the Peewee ice hockey sprint start. Am J Sports Med. 2011;39(Suppl):29S–35.

    Article  PubMed  Google Scholar 

  94. Chang R, Turcotte R, Pearsall D. Hip adductor muscle function in forward skating. Sports Biomech. 2009;8(3):212–22.

    Article  PubMed  Google Scholar 

  95. Keogh MJ, Batt ME. A review of femoroacetabular impingement in athletes. Sports Med. 2008;38(10):863–78.

    Article  PubMed  Google Scholar 

  96. Orava S, Jaroma H, Hulkko A. Overuse injuries in cross-country skiing. Br J Sports Med. 1985;19(3):158–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anderson K, Strickland SM, Warren R. Hip and groin injuries in athletes. Am J Sports Med. 2001;29(4):521–33.

    CAS  PubMed  Google Scholar 

  98. van den Bogert AJ, Read L, Nigg BM. An analysis of hip joint loading during walking, running, and skiing. Med Sci Sports Exerc. 1999;31(1):131–42.

    Article  PubMed  Google Scholar 

  99. Holmberg HC, Lindinger S, Stoggl T, Eitzlmair E, Muller E. Biomechanical analysis of double poling in elite cross-country skiers. Med Sci Sports Exerc. 2005;37(5):807–18.

    Article  PubMed  Google Scholar 

  100. Johnston RC, Smidt GL. Measurement of hip-joint motion during walking. Evaluation of an electrogoniometric method. J Bone Joint Surg Am. 1969;51(6):1082–94.

    Article  CAS  PubMed  Google Scholar 

  101. Paul JP. Biomechanics. The biomechanics of the hip-joint and its clinical relevance. Proc R Soc Med. 1966;59(10):943–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Andriacchi TP, Ogle JA, Galante JO. Walking speed as a basis for normal and abnormal gait measurements. J Biomech. 1977;10(4):261–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Torry PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Torry, M.R., Decker, M.J., Cowley, J.C., Keeley, D., Kernozek, T.W., Shelburne, K.B. (2017). Function of the Normal Hip. In: McCarthy, J., Noble, P., Villar, R. (eds) Hip Joint Restoration. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0694-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0694-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0693-8

  • Online ISBN: 978-1-4614-0694-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics