Skip to main content

Vascular Endothelial Growth Factor and Tumour-Associated Macrophages

  • Chapter
  • First Online:
  • 786 Accesses

Abstract

Various epidemiological, clinical, and experimental studies have not only demonstrated a link between chronic inflammation and cancer onset, but also shown that myeloid cells from the bone marrow such as tumor-infiltrating macrophages significantly influence tumor progression (de Visser et al., Nature Rev. Cancer 6:24–37, 2006). Tumor angiogenesis is a crucial step in tumor development as tumors have to establish a blood supply to grow and metastasize. Although tumor cells were first thought to drive the cellular events underpinning tumor angiogenesis, the use of transgenic mouse models and analysis of human tumor biopsies have shown that the tumor microenvironment with infiltrating macrophages are important for regulating the process of tumor angiogenesis (Murdoch et al., Nat Rev. Cancer 8:618–631, 2008). The pro-angiogenic vascular endothelial growth factor (VEGF) is known to be the master regulator of angiogenesis due to its strong mitogenic effect on endothelial cells (Keck et al., Science 246:1309–1312, 1989; Leung et al. 1999), and macrophages are capable of releasing large amounts of VEGF (Dirkx et al., J. Leukoc. Biol. 80:1183–1196, 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bailey C et al (2007) Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis 24:121–130

    Article  PubMed  CAS  Google Scholar 

  • Barleon B et al (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343

    PubMed  CAS  Google Scholar 

  • Batchelor TT et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  PubMed  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  • Bingle L, Lewis CE, Corke KP, Reed MW, Brown NJ (2006) Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer 94:101–107

    Article  PubMed  CAS  Google Scholar 

  • Biswas SK et al (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107:2112–2122

    Article  PubMed  CAS  Google Scholar 

  • Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180:2011–2017

    PubMed  CAS  Google Scholar 

  • Bottazzi B, Walter S, Govoni D, Colotta F, Mantovani A (1992) Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol 148:1280–1285

    PubMed  CAS  Google Scholar 

  • Burke B et al (2002) Expression of HIF-1α by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 196:204–212

    Article  PubMed  CAS  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  • Cohen MH, Gootenberg J, Keegan P, Pazdur R (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12:713–718

    Article  PubMed  CAS  Google Scholar 

  • Davis-Smyth T, Chen H, Park J, Presta LG, Ferrara N (1996) The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J 15:4919–4927

    PubMed  CAS  Google Scholar 

  • de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nature Rev Cancer 6:24–37

    Article  Google Scholar 

  • Dineen SP et al (2008) Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res 68:4340–4346

    Article  PubMed  CAS  Google Scholar 

  • Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    Article  PubMed  CAS  Google Scholar 

  • Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  PubMed  CAS  Google Scholar 

  • Escudier B et al (2007) Sorafenib in advanced clear-cell renal- cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  • Fischer C et al (2007) Anti-PlGF inhibits growth of VEGF(R)- inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga S et al (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127:2031–2041

    Article  PubMed  CAS  Google Scholar 

  • Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J (1973) Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst 50:219–228

    PubMed  Google Scholar 

  • Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS (1999) Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 59:1592–1608

    PubMed  CAS  Google Scholar 

  • Hagemann T et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176:5023–5032

    PubMed  CAS  Google Scholar 

  • Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  PubMed  CAS  Google Scholar 

  • Hicklin DJ (2007) Promoting angiogenesis to a fault. Nat Biotech 25:300–302

    Article  CAS  Google Scholar 

  • Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354

    Article  PubMed  CAS  Google Scholar 

  • Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893

    PubMed  Google Scholar 

  • Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  • Kaser A, Winklmayr M, Lepperdinger G, Kreil G (2003) The AVIT protein family. EMBO Rep 4:469–473

    Article  PubMed  CAS  Google Scholar 

  • Keck PJ et al (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Kimura YN et al (2007) Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci 98:2009–2018

    Article  PubMed  CAS  Google Scholar 

  • Knowles H, Leek R, Harris AL (2004) Macrophage infiltration and angiogenesis in human malignancy. Novartis Found Symp 256:189–200

    Article  PubMed  CAS  Google Scholar 

  • Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 12:5018–5022

    Article  PubMed  CAS  Google Scholar 

  • LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N (2004) Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hemato- poietic cell mobilization. Proc Natl Acad Sci USA 101:16813–16818

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991–995

    Article  PubMed  CAS  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1998) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158

    Article  PubMed  CAS  Google Scholar 

  • Lewis CE, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti- cancer therapies. Am J Pathol 167:627–635

    Article  PubMed  CAS  Google Scholar 

  • Li C, Shintani S, Terakado N, Nakashiro K, Hamakawa H (2002) Infiltration of tumor-associated macrophages in human oral squamous cell carcinoma. Oncol Rep 9:1219–1223

    PubMed  Google Scholar 

  • Li JL et al (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67:11244–11253

    Article  PubMed  CAS  Google Scholar 

  • Lin EY et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    Article  PubMed  CAS  Google Scholar 

  • Loberg RD et al (2007) CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia 9:556–562

    Article  PubMed  CAS  Google Scholar 

  • Llovet J. et al. (2007) Sorafenib improves survival in advanced hepatocellular carcinoma (HCC): results of a phase III randomized placebo-controlled trial (SHARP trial). J Clin Oncol. Part I. ASCO Annual Meeting Proceedings LBA1, 25, 2007

    Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Masuda Y, Takatsu Y, Terao Y et al (2002) Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem Biophys Res Commun 293:396–402

    Article  PubMed  CAS  Google Scholar 

  • Miller K et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  PubMed  CAS  Google Scholar 

  • Morikawa S et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    Article  PubMed  Google Scholar 

  • Motzer RJ et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  PubMed  CAS  Google Scholar 

  • Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150:1723–1734

    PubMed  CAS  Google Scholar 

  • Noguera-Troise I et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Ohno S et al (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335–3342

    PubMed  Google Scholar 

  • Onita T et al (2002) Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2α correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin Cancer Res 8:471–480

    PubMed  CAS  Google Scholar 

  • Ridgway J et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087

    Article  PubMed  CAS  Google Scholar 

  • Saccani A et al (2006) p50 nuclear factor-κB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66:11432–11440

    Article  PubMed  CAS  Google Scholar 

  • Sandler A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  • Scotton C, Milliken D, Wilson J, Raju S, Balkwill F (2001) Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours. Br J Cancer 85:891–897

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, Malik AK et al (2007a) Tumor refrectoriness to anti-VEGF treatment is mediated by CD11b  +  Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, Zhong C et al (2007b) Bv8 regulates myeloid cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Singh M, Thompson JD, Ferrara N (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci USA 105:2640–2645

    Article  PubMed  CAS  Google Scholar 

  • Stockmann C et al (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456:814–818

    Google Scholar 

  • Talks KL et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1α andHIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Kelleher DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28:29–35

    Article  PubMed  CAS  Google Scholar 

  • Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–26995

    PubMed  CAS  Google Scholar 

  • White JR et al (2004) Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 83:1–8

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro S et al (1994) Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am J Pathol 145:856–867

    PubMed  CAS  Google Scholar 

  • Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS (2002) Effect of p53 status on tumor response to antiangio- genic therapy. Science 295:1526–1528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgements and Competing Interests statement: We acknowledge the support of the Deutsche Forschungs Gemeinschaft to C.S. (STO 787/1-1 and STO 787/1-2) and NIH CA82515 to R.S.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall S. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stockmann, C., Johnson, R.S. (2011). Vascular Endothelial Growth Factor and Tumour-Associated Macrophages. In: Lawrence, T., Hagemann, T. (eds) Tumour-Associated Macrophages. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0662-4_8

Download citation

Publish with us

Policies and ethics