Fuzziness pp 142-158 | Cite as

Fuzziness in the Core of the Human Pathogenic Viruses HCV and HIV

  • Roland Ivanyi-Nagy
  • Jean-Luc DarlixEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 725)


Nucleocapsid proteins are the molecular jacks-of-all-trades of small RNA viruses because they play pivotal roles in viral genomic RNA selection and packaging, regulate genome replication and virus budding and at the same time orchestrate a complex, dynamic interaction network with host cell proteins contributing to viral persistence and pathogenecity. These promiscuous interactions are made possible by the intrinsic flexibility of viral nucleocapsid proteins, facilitating either simultaneous or sequential binding to a plethora of structurally unrelated substrates, resulting in flexible, ever-changing multiprotein, RNA-protein and lipid-protein complexes during the viral replicative cycle. In this chapter, we examine the flexibility and multifunctionality of the assemblages formed by the nucleocapsid proteins of two important human pathogens, hepatitis C virus and human immunodeficiency virus.


Bovine Viral Diarrhea Virus Nucleocapsid Protein Virus Core Human Pathogenic Virus Viral Nucleocapsid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ward JJ, Sodhi JS, McGuffin LJ et al. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004; 337(3):635–645.PubMedGoogle Scholar
  2. 2.
    Dunker AK, Obradovic Z, Romero P et al. Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 2000; 11:161–171.PubMedGoogle Scholar
  3. 3.
    Mohan A, Sullivan WJ Jr., Radivojac P et al. Intrinsic disorder in pathogenic and nonpathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. Mol Biosyst 2008; 4(4):328–340.PubMedGoogle Scholar
  4. 4.
    Xie H, Vucetic S, Iakoucheva LM et al. Functional anthology of intrinsic disorder. 3. Ligands, posttranslational modifications and diseases associated with intrinsically disordered proteins. J Proteome Res 2007; 6(5):1917–1932.PubMedGoogle Scholar
  5. 5.
    Xie H, Vucetic S, Iakoucheva LM et al. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 2007; 6(5):1882–1898.PubMedGoogle Scholar
  6. 6.
    Dosztanyi Z, Chen J, Dunker AK et al. Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 2006; 5(11):2985–2995.PubMedGoogle Scholar
  7. 7.
    Haynes C, Oldfield CJ, Ji F et al. Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2006; 2(8):e100.Google Scholar
  8. 8.
    Morellet N, de Rocquigny H, Mely Y et al. Conformational behaviour of the active and inactive forms of the nucleocapsid NCp7 of HIV-1 studied by 1H NMR. J Mol Biol 1994;235(1):287–301.PubMedGoogle Scholar
  9. 9.
    Morellet N, Jullian N, De Rocquigny H et al. Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR. EMBO J 1992; 11(8):3059–3065.PubMedGoogle Scholar
  10. 10.
    Goh GK, Dunker AK, Uversky VN. Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics 2008; 9 Suppl 2:S4.Google Scholar
  11. 11.
    Longhi S, Oglesbee M. Structural disorder within the measles virus nucleoprotein and phosphoprotein. Protein Pept Lett 2010; 17(8):961–978.PubMedGoogle Scholar
  12. 12.
    Reingewertz TH, Shalev DE, Friedler A. Structural disorder in the HIV-1 Vif protein and interaction-dependent gain of structure. Protein Pept Lett 2010; 17(8):988–998.PubMedGoogle Scholar
  13. 13.
    Shojania S, O’Neil JD. Intrinsic disorder and function of the HIV-1 Tat protein. Protein Pept Lett 17(8):999–1011.Google Scholar
  14. 14.
    Ivanyi-Nagy R, Darlix JL. Intrinsic disorder in the core proteins of flaviviruses. Protein Pept Lett 2010; 17(8):1019–1025.PubMedGoogle Scholar
  15. 15.
    Chang CK, Hsu YL, Chang YH et al. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol 2009; 83(5):2255–2264.PubMedGoogle Scholar
  16. 16.
    Chang CK, Sue SC, Yu TH et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci 2006; 13(1):59–72.PubMedGoogle Scholar
  17. 17.
    Lindenbach B, Thiel HJ, Rice CM. Flaviviridae: The Viruses and Their Replication. Fields Virology. Philadelphia: Lippincott-Raven Publishers; 2007:1101–1152.Google Scholar
  18. 18.
    Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 2005; 5(9):558–567.PubMedGoogle Scholar
  19. 19.
    Lavanchy D. The global burden of hepatitis C. Liver Int 2009;29 Suppl 1:74–81.PubMedGoogle Scholar
  20. 20.
    Hoofnagle JH. Course and outcome of hepatitis C. Hepatology 2002; 36(5 Suppl 1):S21–29.Google Scholar
  21. 21.
    Galossi A, Guarisco R, Bellis L et al. Extra hepatic manifestations of chronic HCV infection. J Gastrointestin Liver Dis 2007; 16(1):65–73.PubMedGoogle Scholar
  22. 22.
    Acharya JN, Pacheco VH. Neurologic complications of hepatitis C. Neurologist 2008; 14(3):151–156.PubMedGoogle Scholar
  23. 23.
    Bartenschlager R, Frese M, Pietschmann T. Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 2004; 63:71–180.PubMedGoogle Scholar
  24. 24.
    Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nat Rev Microbiol 2007; 5(6):453–463.Google Scholar
  25. 25.
    Hijikata M, Kato N, Ootsuyama Y et al. Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc Natl Acad Sci USA 1991; 88(13):5547–5551.PubMedGoogle Scholar
  26. 26.
    McLauchlan J, Lemberg MK, Hope G et al. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 2002; 21(15):3980–3988.PubMedGoogle Scholar
  27. 27.
    Hope RG, McLauchlan J. Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J Gen Virol 2000; 81(Pt 8):1913–1925.PubMedGoogle Scholar
  28. 28.
    Santolini E, Migliaccio G, La Monica N. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 1994; 68(6):3631–3641.PubMedGoogle Scholar
  29. 29.
    Cristofari G, Ivanyi-Nagy R, Gabus C et al. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Res 2004; 32(8):2623–2631.PubMedGoogle Scholar
  30. 30.
    Majeau N, Gagne V, Boivin A et al. The N-terminal half of the core protein of hepatitis C virus is sufficient for nucleocapsid formation. J Gen Virol 2004; 85(Pt 4):971–981.PubMedGoogle Scholar
  31. 31.
    Kunkel M, Lorinczi M, Rijnbrand R et al. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J Virol 2001; 75(5):2119–2129.PubMedGoogle Scholar
  32. 32.
    Kunkel M, Watowich SJ. Conformational changes accompanying self-assembly of the hepatitis C virus core protein. Virology 2002; 294(2):239–245.PubMedGoogle Scholar
  33. 33.
    Ivanyi-Nagy R, Lavergne JP, Gabus C et al. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 2008; 36(3):712–725.PubMedGoogle Scholar
  34. 34.
    Boulant S, Vanbelle C, Ebel C et al. Hepatitis C virus core protein is a dimeric alpha-helical protein exhibiting membrane protein features. J Virol 2005; 79(17):11353–11365.PubMedGoogle Scholar
  35. 35.
    Duvignaud JB, Savard C, Fromentin R et al. Structure and dynamics of the N-terminal half of hepatitis C virus core protein: an intrinsically unstructured protein. Biochem Biophys Res Commun 2009;378(1):27–31.PubMedGoogle Scholar
  36. 36.
    Ivanyi-Nagy R, Kanevsky I, Gabus C et al. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions. Nucleic Acids Res 2006; 34(9):2618–2633.PubMedGoogle Scholar
  37. 37.
    Miyanari Y, Atsuzawa K, Usuda N et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9(9):1089–1097.PubMedGoogle Scholar
  38. 38.
    Namba K, Stubbs G. Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly. Science 1986; 231(4744):1401–1406.PubMedGoogle Scholar
  39. 39.
    Butler PJ. Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos Trans R Soc Lond B Biol Sci 1999; 354(1383):537–550.PubMedGoogle Scholar
  40. 40.
    Fraenkel-Conrat H, Williams RC. Reconstitution of Active Tobacco Mosaic Virus from Its Inactive Protein and Nucleic Acid Components. Proc Natl Acad Sci USA 1955; 41(10):690–698.PubMedGoogle Scholar
  41. 41.
    Tompa P, Fuxreiter M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci 2008; 33(1):2–8.PubMedGoogle Scholar
  42. 42.
    Boulant S, Montserret R, Hope RG et al. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 2006; 281(31):22236–22247.PubMedGoogle Scholar
  43. 43.
    Majeau N, Fromentin R, Savard C et al. Palmitoylation of hepatitis C virus core protein is important for virion production. J Biol Chem 2009.Google Scholar
  44. 44.
    Ivanyi-Nagy R, Davidovic L, Khandjian EW et al. Disordered RNA chaperone proteins: from functions to disease. Cell Mol Life Sci 2005; 62(13):1409–1417.PubMedGoogle Scholar
  45. 45.
    Zuniga S, Sola I, Cruz JL et al. Role of RNA chaperones in virus replication. Virus Res 2009; 139(2):253–266.PubMedGoogle Scholar
  46. 46.
    Tompa P, Csermely P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J 2004; 18(11):1169–1175.Google Scholar
  47. 47.
    Kuhn RJ, Zhang W, Rossmann MG et al. Structure of dengue virus: implications for flavivirus organization, maturation and fusion. Cell 2002; 108(5):717–725.PubMedGoogle Scholar
  48. 48.
    Mukhopadhyay S, Kim BS, Chipman PR et al. Structure of West Nile virus. Science 2003; 302(5643):248.PubMedGoogle Scholar
  49. 49.
    Zhang Y, Corver J, Chipman PR et al. Structures of immature flavivirus particles. EMBO J 2003; 22(11):2604–2613.PubMedGoogle Scholar
  50. 50.
    Murray CL, Marcotrigiano J, Rice CM. Bovine viral diarrhea virus core is an intrinsically disordered protein that binds RNA. J Virol 2008; 82(3):1294–1304.PubMedGoogle Scholar
  51. 51.
    Moriya K, Fujie H, Shintani Y et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998; 4(9):1065–1067.PubMedGoogle Scholar
  52. 52.
    Moriya K, Yotsuyanagi H, Shintani Y et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 1997; 78 (Pt 7):1527–1531.PubMedGoogle Scholar
  53. 53.
    Lerat H, Honda M, Beard MR et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 2002; 122(2):352–365.PubMedGoogle Scholar
  54. 54.
    Shintani Y, Fujie H, Miyoshi H et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 2004; 126(3):840–848.PubMedGoogle Scholar
  55. 55.
    Liang TJ, Heller T. Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology 2004; 127(5 Suppl 1):S62–71.Google Scholar
  56. 56.
    McLauchlan J. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 2000; 7(1):2–14.PubMedGoogle Scholar
  57. 57.
    Ray RB, Ray R. Hepatitis C virus core protein: intriguing properties and functional relevance. FEMS Microbiol Lett 2001; 202(2):149–156.PubMedGoogle Scholar
  58. 58.
    de Chassey B, Navratil V, Tafforeau L et al. Hepatitis C virus infection protein network. Mol Syst Biol 2008; 4:230.PubMedGoogle Scholar
  59. 59.
    Navratil V, de Chassey B, Meyniel L et al. VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus-host interaction networks. Nucleic Acids Res 2009; 37(Database issue):D661–668.Google Scholar
  60. 60.
    Del Campo JA, Romero-Gomez M. Steatosis and insulin resistance in hepatitis C: a way out for the virus? World J Gastroenterol 2009; 15(40):5014–]PubMedGoogle Scholar
  61. 61.
    Birerdinc A, Afendy A, Stepanova M et al. Functional pathway analysis of genes associated with response to treatment for chronic hepatitis C. J Viral Hepat 2009.Google Scholar
  62. 62.
    Koike K, Moriya K, Matsuura Y. Animal models for hepatitis C and related liver disease. Hepatol Res 40(1):69–82.Google Scholar
  63. 63.
    Miyamoto H, Moriishi K, Moriya K et al. Involvement of the PA28gamma-dependent pathway in insulin resistance induced by hepatitis C virus core protein. J Virol 2007; 81(4):1727–1735.PubMedGoogle Scholar
  64. 64.
    Moriishi K, Mochizuki R, Moriya K et al. Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA 2007; 104(5):1661–1666.PubMedGoogle Scholar
  65. 65.
    Moriishi K, Okabayashi T, Nakai K et al. Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 2003; 77(19):10237–10249.PubMedGoogle Scholar
  66. 66.
    Kriwacki RW, Hengst L, Tennant L et al. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 1996; 93(21):11504–11509.PubMedGoogle Scholar
  67. 67.
    Dyer MD, Murali TM, Sobral BW. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 2008; 4(2):e32.PubMedGoogle Scholar
  68. 68.
    Temin HM. Sex and recombination in retroviruses. Trends Genet 1991; 7(3):71–74.PubMedGoogle Scholar
  69. 69.
    Chen J, Nikolaitchik O, Singh J et al. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci USA 2009; 106(32):13535–13540.PubMedGoogle Scholar
  70. 70.
    Coffin JM. Structure, replication and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 1979; 42(1):1–26.PubMedGoogle Scholar
  71. 71.
    Coffin JM. Retroviridae and their replication. In: Fields B, Knipe D, Chanock R, eds. Virology Vol I. New York: Raven Press; 1990:1437–1500.Google Scholar
  72. 72.
    Gilboa E, Mitra SW, Goff S et al. A detailed model of reverse transcription and tests of crucial aspects. Cell 1979; 18(1):93–100.PubMedGoogle Scholar
  73. 73.
    Lewinski MK, Bushman FD. Retroviral DNA integration-mechanism and consequences. Adv Genet 2005; 55:147–181.PubMedGoogle Scholar
  74. 74.
    Wainberg MA, Jeang KT. 25 years of HIV-1 research-progress and perspectives. BMC Med 2008; 6:31.PubMedGoogle Scholar
  75. 75.
    Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res 85(1):1–18.Google Scholar
  76. 76.
    Jones KA. HIV trans-activation and transcription control mechanisms. New Biol 1989; 1(2):127–135.PubMedGoogle Scholar
  77. 77.
    Yilmaz A, Bolinger C, Boris-Lawrie K. Retrovirus translation initiation: Issues and hypotheses derived from study of HIV-1. Curr HIV Res 2006; 4(2):131–139.PubMedGoogle Scholar
  78. 78.
    Darlix JL, Garrido JL, Morellet N et al. Properties, functions and drug targeting of the multifunctional nucleocapsid protein of the human immunodeficiency virus. Adv Pharmacol 2007; 55:299–346.PubMedGoogle Scholar
  79. 79.
    Darlix JL, Lapadat-Tapolsky M, de Rocquigny H et al. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol 1995; 254(4):523–537.PubMedGoogle Scholar
  80. 80.
    Berkhout B. Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol 1996; 54:1–34.PubMedGoogle Scholar
  81. 81.
    Levin JG, Guo J, Rouzina I et al. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog Nucleic Acid Res Mol Biol 2005; 80:217–286.PubMedGoogle Scholar
  82. 82.
    Rein A, Henderson LE, Levin JG. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 1998; 23(8):297–301.PubMedGoogle Scholar
  83. 83.
    Kleiman L, Halwani R, Javanbakht H. The selective packaging and annealing of primer tRNALys3 in HIV-1. Curr HIV Res 2004; 2(2):163–175.PubMedGoogle Scholar
  84. 84.
    De Guzman RN, Wu ZR, Stalling CC et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 1998; 279(5349):384–388.PubMedGoogle Scholar
  85. 85.
    de Rocquigny H, Shvadchak V, Avilov S et al. Targeting the viral nucleocapsid protein in anti-HIV-1 therapy. Mini Rev Med Chem 2008; 8(1):24–35.PubMedGoogle Scholar
  86. 86.
    Thomas JA, Gorelick RJ. Nucleocapsid protein function in early infection processes. Virus Res 2008; 134(1–2):39–63.PubMedGoogle Scholar
  87. 87.
    Grigorov B, Decimo D, Smagulova F et al. Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers. Retrovirology 2007; 4:54.PubMedGoogle Scholar
  88. 88.
    Tanchou V, Decimo D, Pechoux C et al. Role of the N-terminal zinc finger of human immunodeficiency virus type 1 nucleocapsid protein in virus structure and replication. J Virol 1998; 72(5):4442–4447.PubMedGoogle Scholar
  89. 89.
    Cristofari G, Darlix JL. The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol 2002; 72:223–268.PubMedGoogle Scholar
  90. 90.
    Goff SP. Host factors exploited by retroviruses. Nat Rev Microbiol 2007; 5(4):253–263.PubMedGoogle Scholar
  91. 91.
    Freed EO. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 1998; 251(1):1–15.PubMedGoogle Scholar
  92. 92.
    Freed EO. Viral late domains. J Virol 2002; 76(10):4679–4687.PubMedGoogle Scholar
  93. 93.
    Balvay L, Lopez Lastra M, Sargueil B, Darlix JL, Ohlmann T. Translational control of retroviruses. Nat Rev Microbiol 2007; 5(2):128–140.PubMedGoogle Scholar
  94. 94.
    Kuciak M, Gabus C, Ivanyi-Nagy R et al. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro. Nucleic Acids Res 2008; 36(10):3389–3400.PubMedGoogle Scholar
  95. 95.
    Cimarelli A, Darlix JL. Assembling the human immunodeficiency virus type 1. Cell Mol Life Sci 2002; 59(7):1166–1184.PubMedGoogle Scholar
  96. 96.
    Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol 2008; 18(2):203–217.PubMedGoogle Scholar
  97. 97.
    Mangeot PE, Negre D, Dubois B et al. Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 2000; 74(18):8307–8315.PubMedGoogle Scholar
  98. 98.
    Negre D, Duisit G, Mangeot PE et al. Lentiviral vectors derived from simian immunodeficiency virus. Curr Top Microbiol Immunol 2002; 261:53–74.PubMedGoogle Scholar
  99. 99.
    Saad JS, Loeliger E, Luncsford P et al. Point mutations in the HIV-1 matrix protein turn off the myristyl switch. J Mol Biol 2007; 366(2):574–585.PubMedGoogle Scholar
  100. 100.
    Saad JS, Miller J, Tai J et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 2006; 103(30):11364–11369.PubMedGoogle Scholar
  101. 101.
    Raposo G, Moore M, Innes D et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 2002; 3(10):718–729.PubMedGoogle Scholar
  102. 102.
    Grigorov B, Arcanger F, Roingeard P et al. Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines. J Mol Biol 2006; 359(4):848–862.PubMedGoogle Scholar
  103. 103.
    Ono A, Freed EO. Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. J Virol 2004; 78(3):1552–1563.PubMedGoogle Scholar
  104. 104.
    Ono A, Freed EO. Role of lipid rafts in virus replication. Adv Virus Res 2005; 64:311–358.PubMedGoogle Scholar
  105. 105.
    Hamard-Peron E, Juillard F, Saad JS et al. Targeting of murine leukemia virus gag to the plasma membrane is mediated by PI(4,5)P2/PS and a polybasic region in the matrix. J Virol 84(1):503–515.Google Scholar
  106. 106.
    Demirov DG, Freed EO. Retrovirus budding. Virus Res 2004; 106(2):87–102.PubMedGoogle Scholar
  107. 107.
    Morita E, Sundquist WI. Retrovirus budding. Annu Rev Cell Dev Biol 2004; 20:395–425.PubMedGoogle Scholar
  108. 108.
    Popov S, Popova E, Inoue M et al. Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J Virol 2009; 83(14):7185–7193.PubMedGoogle Scholar
  109. 109.
    Fujii K, Munshi UM, Ablan SD et al. Functional role of Alix in HIV-1 replication. Virology 2009; 391(2):284–292.PubMedGoogle Scholar
  110. 110.
    Gabus C, Auxilien S, Pechoux C et al. The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein. J Mol Biol 2001; 307(4):1011–1021.PubMedGoogle Scholar
  111. 111.
    Buckman JS, Bosche WJ, Gorelick RJ. Human immunodeficiency virus type 1 nucleocapsid zn(2+) fingers are required for efficient reverse transcription, initial integration processes and protection of newly synthesized viral DNA. J Virol 2003; 77(2):1469–1480.PubMedGoogle Scholar
  112. 112.
    Berthoux L, Pechoux C, Ottmann M et al. Mutations in the N-terminal domain of human immunodeficiency virus type 1 nucleocapsid protein affect virion core structure and proviral DNA synthesis. J Virol 1997; 71(9):6973–6981.Google Scholar
  113. 113.
    Bampi C, Bibillo A, Wendeler M et al. Nucleotide excision repair and template-independent addition by HIV-1 reverse transcriptase in the presence of nucleocapsid protein. J Biol Chem 2006; 281(17):11736–11743.PubMedGoogle Scholar
  114. 114.
    Carteau S, Gorelick RJ, Bushman FD. Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J Virol 1999; 73(8):6670–6679.PubMedGoogle Scholar
  115. 115.
    Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci USA 1990; 87(4):1556–1560.PubMedGoogle Scholar
  116. 116.
    Cheng Y, LeGall T, Oldfield CJ et al. Rational drug design via intrinsically disordered protein. Trends Biotechnol 2006; 24(10):435–442.PubMedGoogle Scholar
  117. 117.
    Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 2005; 26(4):178–182.PubMedGoogle Scholar
  118. 118.
    Obradovic Z, Peng K, Vucetic S et al. Predicting intrinsic disorder from amino acid sequence. Proteins 2003; 53 Suppl 6:566–572.PubMedGoogle Scholar
  119. 119.
    Freed EO. HIV-1 Gag: flipped out for PI(4,5)P(2). Proc Natl Acad Sci USA 2006; 103(30):11101–11102.PubMedGoogle Scholar
  120. 120.
    Adamson CS, Freed EO. Human immunodeficiency virus type 1 assembly, release and maturation. Adv Pharmacol 2007; 55:347–387.PubMedGoogle Scholar
  121. 121.
    Lopez-Verges S, Camus G, Blot G et al. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 2006; 103(40):14947–14952.PubMedGoogle Scholar
  122. 122.
    Paillart JC, Shehu-Xhilaga M, Marquet R et al. Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2004; 2(6):461–472.PubMedGoogle Scholar
  123. 123.
    Lavallee C, Yao XJ, Ladha A et al. Requirement of the Pr55gag precursor for incorporation of the Vpr product into human immunodeficiency virus type 1 viral particles. J Virol 1994; 68(3):1926–1934.PubMedGoogle Scholar
  124. 124.
    Mougel M, Houzet L, Darlix JL. When is it time for reverse transcription to start and go? Retrovirology 2009; 6:24.PubMedGoogle Scholar
  125. 125.
    Garrus JE, von Schwedler UK, Pornillos OW et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001; 107(1):55–65.PubMedGoogle Scholar
  126. 126.
    VerPlank L, Bouamr F, LaGrassa TJ et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci USA 2001; 98(14):7724–7729.PubMedGoogle Scholar
  127. 127.
    Pettit SC, Lindquist JN, Kaplan AH et al. Processing sites in the human immunodeficiency virus type 1 (HIV-1) Gag-Pro-Pol precursor are cleaved by the viral protease at different rates. Retrovirology 2005; 2:66.PubMedGoogle Scholar
  128. 128.
    Pettit SC, Moody MD, Wehbie RS et al. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 1994; 68(12):8017–8027.PubMedGoogle Scholar
  129. 129.
    Fu W, Dang Q, Nagashima K et al. Effects of Gag mutation and processing on retroviral dimeric RNA maturation. J Virol 2006; 80(3):1242–1249.PubMedGoogle Scholar
  130. 130.
    Wolf D, Goff SP. Host restriction factors blocking retroviral replication. Annu Rev Genet 2008; 42:143–163.PubMedGoogle Scholar
  131. 131.
    Goncalves J, Santa-Marta M. HIV-1 Vif and APOBEC3G: multiple roads to one goal. Retrovirology 2004; 1:28.PubMedGoogle Scholar
  132. 132.
    Martinez-Picado J, Martinez MA. HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res 2008; 134(1–2):104–123.PubMedGoogle Scholar
  133. 133.
    Wlodawer A, Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 1998; 27:249–284.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Molecular Parasitology Group, The Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
  2. 2.LaboRetroUnité de Virologie Humaine INSERM 758, IFR 128, ENS de LyonLyonFrance

Personalised recommendations