Advertisement

Fuzziness pp 74-85 | Cite as

Consequences of Fuzziness in the NFκB/IκBα Interaction

  • Elizabeth A. Komives
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 725)

Abstract

This chapter provides a short review of various biophysical experiments that have been applied to the inhibitor of kappa B, IκBα and its binding partner, nuclear factor kappa B, or NFκB. The picture that emerges from amide hydrogen/deuterium exchange, NMR and binding kinetics experiments is one in which parts of both proteins are “fuzzy” in the free-state and some parts remain “fuzzy” in the NFκB-IκBα complex. The NFκB family of transcription factors responds to inflammatory cytokines with rapid transcriptional activation, in which NFκB enters the nucleus and binds DNA. Just as rapidly as transcription is activated, it is subsequently repressed by newly synthesized IκBα?that also enters the nucleus and removes NFκB from the DNA. Because IκBα?is an ankyrin repeat protein, it’s “fuzziness” can be controlled by mutagenesis to stabilized the folded state. Experimental comparison with such stabilized mutants helps provide evidence that much of the system control depends on the “fuzziness” of IκBα.

Keywords

Ankyrin Repeat Transactivation Domain Dimerization Domain Binding Kinetics Biophysical Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoffmann A, Levchenko A, Scott ML et al. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 2002; 298(5596):1241–1245.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev 2006; 210:171–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16:225–260.PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar A, Takada Y, Boriek AM et al. Nuclear factor-kappaB: its role in health and disease. J Mol Med 2004; 82(7):434–448.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen FE, Huang DB, Chen YQ et al. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 1998; 391(6665):410–413.PubMedCrossRefGoogle Scholar
  6. 6.
    Verma IM, Stevenson JK, Schwarz EM et al. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 1995; 9(22):2723–2735.PubMedCrossRefGoogle Scholar
  7. 7.
    Basak S, Kim H, Kearns JD et al. A fourth IkappaB protein within the NF-kappaB signaling module. Cell 2007; 128(2):369–381.PubMedCrossRefGoogle Scholar
  8. 8.
    Baeuerle PA. IkB-NF-kB structures: at the interface of inflammation control. Cell 1998; 95:729–731.PubMedCrossRefGoogle Scholar
  9. 9.
    Bergqvist S, Croy CH, Kjaergaard M et al. Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex. J Mol Biol 2006; 360(2):421–434.PubMedCrossRefGoogle Scholar
  10. 10.
    Huxford T, Huang DB, Malek S et al. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 1998; 95(6):759–770.PubMedCrossRefGoogle Scholar
  11. 11.
    Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell 1998; 95(6):749–758.PubMedCrossRefGoogle Scholar
  12. 12.
    Traenckner EB, Baeuerle PA. Appearance of apparently ubiquitin-conjugated I kappa B-alpha during its phosphorylation-induced degradation in intact cells. J Cell Sci Suppl 1995; 19:79–84.PubMedGoogle Scholar
  13. 13.
    Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18(49):6853–6866.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffmann A, Leung TH, Baltimore D. Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. EMBO J 2003; 22(20):5530–5539.PubMedCrossRefGoogle Scholar
  15. 15.
    Werner SL, Barken D, Hoffmann A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 2005; 309(5742):1857–1861.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown K, Park S, Kanno T et al. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci USA 1993; 90(6):2532–2536.PubMedCrossRefGoogle Scholar
  17. 17.
    Scott ML, Fujita T, Liou HC et al. The p65 subunit of NF-kappa B regulates I kappa B by two distinct mechanisms. Genes Dev 1993; 7(7A):1266–1276.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun SC, Ganchi PA, Ballard DW et al. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 1993; 259(5103):1912–1915.PubMedCrossRefGoogle Scholar
  19. 19.
    Arenzana-Seisdedos F, Turpin P, Rodriguez M et al. Nuclear localization of IkBa promotes active transport of NF-kB from the nucleus to the cytoplasm. J Cell Sci 1997; 110:369–378.PubMedGoogle Scholar
  20. 20.
    O’Dea EL, Barken D, Peralta RQ et al. A homeostatic model of IkappaB metabolism to control constitutive NF-kappaB activity. Mol Syst Biol 2007; 3:111.PubMedGoogle Scholar
  21. 21.
    Sue SC, Cervantes C, Komives EA, Dyson HJ. Transfer of flexibility between ankyrin repeats in IkappaBalpha upon formation of the NF-kappaB complex. J Mol Biol 2008; 380(5):917–931.PubMedCrossRefGoogle Scholar
  22. 22.
    Cervantes CF, Markwick PRL, Sue SC et al. Functional dynamics of the folded ankyrin repeats of IkappaB alpha revealed by nuclear magnetic resonance. Biochemistry 2009; 48:8023–8031.PubMedCrossRefGoogle Scholar
  23. 23.
    Dosztányi Z, Csizmók V, Tompa P et al. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433–3434.PubMedCrossRefGoogle Scholar
  24. 24.
    Dosztányi Z, Csizmók V, Tompa P, I. S. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 2005; 347:827–839.PubMedCrossRefGoogle Scholar
  25. 25.
    Croy CH, Bergqvist S, Huxford T et al. Biophysical characterization of the free IkappaBalpha ankyrin repeat domain in solution. Protein Sci 2004; 13(7):1767–1777.PubMedCrossRefGoogle Scholar
  26. 26.
    Latzer J, Papoian GA, Prentiss MC et al. Induced fit, folding and recognition of the NF-kappaB-nuclear localization signals by IkappaBalpha and IkappaBbeta. J Mol Biol 2007; 367:262–274.PubMedCrossRefGoogle Scholar
  27. 27.
    Cervantes CF, Bergqvist S, Kjaergaard M et al. The RelA Nuclear Localization Signal Folds upon Binding to IκBα. J Mol Biol 2011; 405(3):754–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Ha JH, Spolar RS, Record MT. Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. J Mol Biol 1989; 209(4):801–816.PubMedCrossRefGoogle Scholar
  29. 29.
    Livingstone JR, Spolar RS, Record MT. Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface-area. Biochemistry 1991; 30(17):4237–4244.PubMedCrossRefGoogle Scholar
  30. 30.
    Spolar RS, Livingstone JR, Record MT. Use of liquid-hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 1992; 31(16):3947–3955.PubMedCrossRefGoogle Scholar
  31. 31.
    Spolar RS, Record JMT. Coupling of local folding to site-specific binding of proteins to DNA. Science 1994; 263:777–784.PubMedCrossRefGoogle Scholar
  32. 32.
    Truhlar SM, Torpey JW, Komives EA. Regions of IkappaBalpha that are critical for its inhibition of NF-kappaB. DNA interaction fold upon binding to NF-kappaB. Proc Natl Acad Sci USA 2006; 103(50):18951–18956.PubMedCrossRefGoogle Scholar
  33. 33.
    Truhlar SM, Croy CH, Torpey JW et al. Solvent accessibility of protein surfaces by amide H/2H exchange MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 2006; 17(11):1490–1497.PubMedCrossRefGoogle Scholar
  34. 34.
    Bergqvist S, Ghosh G, Komives EA. The IkBa/NF-kB complex has two hot-spots, one at either end of the interface. Prot Sci 2008; 17:2051–2058.CrossRefGoogle Scholar
  35. 35.
    Sue SC, Dyson HJ. Interaction of the IkappaBalpha C-terminal PEST sequence with NF-kappaB: insights into the inhibition of NF-kappaB DNA binding by IkappaBalpha. J Mol Biol 2009; 388(4):824–838.PubMedCrossRefGoogle Scholar
  36. 36.
    Shih VF, Kearns JD, Basak S et al. Kinetic control of negative feedback regulators of NF-kappaB/RelA determines their pathogen-and cytokine-receptor signaling specificity. Proc Natl Acad Sci USA 2009; 106(24):9619–9624.PubMedCrossRefGoogle Scholar
  37. 37.
    Malek S, Huang DB, Huxford T et al. X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex. J Biol Chem 2003; 278(25):23094–23100.PubMedCrossRefGoogle Scholar
  38. 38.
    Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234(4774):364–368.PubMedCrossRefGoogle Scholar
  39. 39.
    Rice NR, Ernst MK. In vivo control of NF-kappa-B activation by I-kappa-B-alpha. EMBO J 1993; 12:4685–4695.PubMedGoogle Scholar
  40. 40.
    Pando MP, Verma IM. Signal-dependent and-independent degradation of free and NF-kappa B bound IkappaBalpha. J Biol Chem 2000; 275:21278–21286.PubMedCrossRefGoogle Scholar
  41. 41.
    Mathes E, O’Dea EL, Hoffmann A et al. NF-kappaB dictates the degradation pathway of IkappaBalpha. EMBO J 2008; 27(9):1357–1367.PubMedCrossRefGoogle Scholar
  42. 42.
    Truhlar SME, Mathes E, Cervantes CF et al. Pre-folding IkappaBalpha alters control of NF-kappaB signaling. J Mol Biol 2008; 380:67–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Bergqvist S, Alverdi V, Mengel B et al. Kinetic enhancement of NF-kappaB•DNA dissociation by IkappaBalpha. Proc Natl Acad Sci USA 2009; 106(46):19328–19333.PubMedCrossRefGoogle Scholar
  44. 44.
    The PyMOL Molecular Graphics System [computer program]. Version. San Carlos, CA, USA: DeLano Scientific; 2002.Google Scholar
  45. 45.
    Garner E, Romero P, Dunker AK et al. Predicting binding regions within disordered proteins. Genome Informatics 1999; 10:41–50.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Elizabeth A. Komives
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California San DiegoSan DiegoUSA

Personalised recommendations