Advertisement

Fuzziness pp 15-26 | Cite as

Dynamic Fuzziness During Linker Histone Action

  • Steven J. McBryant
  • Jeffrey C. HansenEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 725)

Abstract

Linker histones are multi-domain nucleosome binding proteins that stabilize higher order chromatin structures and engage in specific protein-protein interactions. Here we emphasize the structural and functional properties of the linker histone C-terminal domain (CTD), focusing on its intrinsic disorder, interaction-induced secondary structure formation and dynamic fuzziness. We argue that the fuzziness inherent in the CTD is a primary molecular mechanism underlying linker histone function in the nucleus.

Keywords

Chromatin Structure Linker Histone High Order Chromatin Structure Secondary Structure Formation Dynamic Fuzziness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Godde JS, Ura K. Cracking the enigmatic linker histone code. Journal of Biochemistry 2008; 143(3):287–293.PubMedCrossRefGoogle Scholar
  2. 2.
    Khochbin S, Wolffe AP. Developmentally regulated expression of linker-histone variants in vertebrates. Eur J Biochem 1994; 225(2):501–510.PubMedCrossRefGoogle Scholar
  3. 3.
    Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2009; 431(1–2):1–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Klug A, Rhodes D, Smith J et al. A low resolution structure for the histone core of the nucleosome. Nature 1980; 287(5782):509–516.PubMedCrossRefGoogle Scholar
  5. 5.
    Woodcock CL, Skoultchi AI, Fan Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 2006; 14(1):17–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Hansen JC. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms and functions. Annu Rev Biophys Biomol Struct 2002; 31:361–392.PubMedCrossRefGoogle Scholar
  7. 7.
    Horowitz-Scherer RA, Woodcock CL. Organization of interphase chromatin. Chromosoma 2006; 115(1):1–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Tremethick DJ. Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 2007; 128(4):651–654.PubMedCrossRefGoogle Scholar
  9. 9.
    Woodcock CL, Dimitrov S. Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 2001; 11(2):130–135.PubMedCrossRefGoogle Scholar
  10. 10.
    Zheng C, Hayes JJ. Structures and interactions of the core histone tail domains. Biopolymers 2003; 68(4):539–546.PubMedCrossRefGoogle Scholar
  11. 11.
    Lu X, Klonoski JM, Resch MG et al. In vitro chromatin self-association and its relevance to genome architecture. Biochem Cell Biol 2006; 84(4):411–417.PubMedCrossRefGoogle Scholar
  12. 12.
    Dorigo B, Schalch T, Bystricky K et al. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 2003; 327(1):85–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Kan PY, Caterino TL, Hayes JJ. The H4 tail domain participates in intra-and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 2009; 29(2):538–546.PubMedCrossRefGoogle Scholar
  14. 14.
    Kan PY, Lu X, Hansen JC et al. The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays. Mol Cell Biol 2007; 27(6):2084–2091.PubMedCrossRefGoogle Scholar
  15. 15.
    Shogren-Knaak M, Ishii H, Sun JM et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. [see comment]. Science 2006; 311(5762):844–847.PubMedCrossRefGoogle Scholar
  16. 16.
    Tse C, Sera T, Wolffe AP et al. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 1998; 18(8):4629–4638.PubMedGoogle Scholar
  17. 17.
    Wang X, Hayes JJ. A cetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 2008; 28(1):227–236.PubMedCrossRefGoogle Scholar
  18. 18.
    Zheng C, Lu X, Hansen JC et al. Salt-dependent intra-and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array. J Biol Chem 2005; 2806(39):33552–33557.CrossRefGoogle Scholar
  19. 19.
    Noll M, Kornberg RD. Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol 1977; 109(3):393–404.PubMedCrossRefGoogle Scholar
  20. 20.
    Simpson RT. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 1978; 17(25):5524–5531.PubMedCrossRefGoogle Scholar
  21. 21.
    Furrer P, Bednar J, Dubochet J et al. DNA at the entry-exit of the nucleosome observed by cryoelectron microscopy. J Struct Biol 1995; 114(3):177–183.PubMedCrossRefGoogle Scholar
  22. 22.
    Bednar J, Horowitz RA, Dubochet J et al. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J Cell Biol 1995; 131(6 Pt 1):1365–1376.PubMedCrossRefGoogle Scholar
  23. 23.
    Bednar J, Horowitz RA, Grigoryev SA et al. Nucleosomes, linker DNA and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 1998; 95(24):14173–14178.PubMedCrossRefGoogle Scholar
  24. 24.
    Allan J, Mitchell T, Harborne N et al. Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol 1986; 187(4):591–601.PubMedCrossRefGoogle Scholar
  25. 25.
    Carruthers LM, Bednar J, Woodcock CL et al. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry 1998; 37(42):14776–14787.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamiche A, Schultz P, Ramakrishnan V et al. Linker histone-dependent DNA structure in linear mononucleosomes. J Mol Biol 1996; 257(1):30–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Krylov D, Leuba S, van Holde K et al. Histones H1 and H5 interact preferentially with crossovers of double-helical DNA. Proc Natl Acad Sci USA 1993; 90(11):5052–5056.PubMedCrossRefGoogle Scholar
  28. 28.
    Renz M, Nehls P, Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci USA 1977; 74(5):1879–1883.PubMedCrossRefGoogle Scholar
  29. 29.
    Thomas JO. Histone H1: location and role. Curr Opin Cell Biol 1999; 11(3):312–317.PubMedCrossRefGoogle Scholar
  30. 30.
    Allan J, Staynov DZ, Gould H. Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repeat. Proc Natl Acad Sci USA 1980; 77(2):885–889.PubMedCrossRefGoogle Scholar
  31. 31.
    Modak SP, Lawrence JJ, Gorka C. Selective removal of histone H1 from nucleosomes at low ionic strength. Mol Biol Rep 1980; 6(4):235–243.PubMedCrossRefGoogle Scholar
  32. 32.
    Osipova TN, Pospelov VA, Svetlikova SB et al. The role of histone H1 in compaction of nucleosomes. Sedimentation behaviour of oligonucleosomes in solution. Eur J Biochem 1980; 113(1):183–188.PubMedCrossRefGoogle Scholar
  33. 33.
    Finch JT, Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 1976; 73(6):1897–1901.PubMedCrossRefGoogle Scholar
  34. 34.
    Renz M, Nehls P, Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci USA 1977; 74(5):1879–1883.PubMedCrossRefGoogle Scholar
  35. 35.
    Thoma F, Koller T. Influence of histone H1 on chromatin structure. Cell 1977; 12(1):101–107.PubMedCrossRefGoogle Scholar
  36. 36.
    Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 1979; 83(2 Pt 1):403–427.PubMedCrossRefGoogle Scholar
  37. 37.
    Routh A, Sandin S, Rhodes D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci USA 2008; 105(26):8872–8877.PubMedCrossRefGoogle Scholar
  38. 38.
    Robinson PJ, Rhodes D. Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol 2006; 16(3):336–343.PubMedCrossRefGoogle Scholar
  39. 39.
    Lu X, Hansen JC. Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J Biol Chem 2004; 279(10):8701–8707.PubMedCrossRefGoogle Scholar
  40. 40.
    Staynov DZ. The controversial 30 nm chromatin fibre. Bioessays 2008; 30(10):1003–1009.PubMedCrossRefGoogle Scholar
  41. 41.
    Dorigo B, Schalch T, Kulangara A et al. Nucleosome arrays reveal the two-start organization of the chromatin fiber. [see comment]. Science 2004; 306(5701):1571–1573.PubMedCrossRefGoogle Scholar
  42. 42.
    Woodcock CL. Chromatin architecture. Curr Opin Struct Biol 2006; 16(2):213–220.PubMedCrossRefGoogle Scholar
  43. 43.
    Schalch T, Duda S, Sargent DF et al. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 2005; 436(7047):138–141.PubMedCrossRefGoogle Scholar
  44. 44.
    Kruithof M, Chien FT, Routh A et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 2009; 16(5):534–540.PubMedCrossRefGoogle Scholar
  45. 45.
    Hartman PG, Chapman GE, Moss T et al. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule. Eur J Biochem 1977; 77(1):45–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Zarbock J, Clore GM, Gronenborn AM. Nuclear magnetic resonance study of the globular domain of chicken histone H5: resonance assignment and secondary structure. Proc Natl Acad Sci USA 1986; 83(20):7628–7632.PubMedCrossRefGoogle Scholar
  47. 47.
    Ramakrishnan V, Finch JT, Graziano V et al. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 1993; 362(6417):219–223.PubMedCrossRefGoogle Scholar
  48. 48.
    Cerf C, Lippens G, Ramakrishnan V et al. Homo-and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure and comparison with the globular domain of histone H5. Biochemistry 1994; 33(37):11079–11086.PubMedCrossRefGoogle Scholar
  49. 49.
    Goytisolo FA, Gerchman SE, Yu X et al. Identification of two DNA-binding sites on the globular domain of histone H5. EMBO J 1996; 15(13):3421–3429.PubMedGoogle Scholar
  50. 50.
    Zhou YB, Gerchman SE, Ramakrishnan V et al. Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature 1998; 395(6700):402–405.PubMedCrossRefGoogle Scholar
  51. 51.
    Pruss D, Bartholomew B, Persinger J et al. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 1996; 274(5287):614–617.PubMedCrossRefGoogle Scholar
  52. 52.
    Hayes JJ, Kaplan R, Ura K et al. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome. J Biol Chem 1996; 271(42):25817–25822.PubMedCrossRefGoogle Scholar
  53. 53.
    Hayes JJ. Site-directed cleavage of DNA by a linker histone—Fe(II) EDTA conjugate: localization of a globular domain binding site within a nucleosome. Biochemistry 1996; 35(37):11931–11937.PubMedCrossRefGoogle Scholar
  54. 54.
    Hayes JJ, Pruss D, Wolffe AP. Contacts of the globular domain of histone H5 and core histones with DNA in a “chromatosome”. Proc Natl Acad Sci USA 1994; 91(16):7817–7821.PubMedCrossRefGoogle Scholar
  55. 55.
    Hayes JJ, Wolffe AP. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc Natl Acad Sci USA 1993; 90(14):6415–6419.PubMedCrossRefGoogle Scholar
  56. 56.
    An W, Leuba SH, van Holde K et al. Linker histone protects linker DNA on only one side of the core particle and in a sequence-dependent manner. Proc Natl Acad Sci USA 1998; 95(7):3396–3401.PubMedCrossRefGoogle Scholar
  57. 57.
    An W, van Holde K, Zlatanova J. Linker histone protection of chromatosomes reconstituted on 5S rDNA from Xenopus borealis: a reinvestigation. Nucleic Acids Res 1998; 26(17):4042–4046.PubMedCrossRefGoogle Scholar
  58. 58.
    Allan J, Hartman PG, Crane-Robinson C et al. The structure of histone H1 and its location in chromatin. Nature 1980; 288(5792):675–679.PubMedCrossRefGoogle Scholar
  59. 59.
    Vila R, Ponte I, Jimenez MA et al. An inducible helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: a CD and NMR study. Protein Sci 2002; 11(2):214–220.PubMedCrossRefGoogle Scholar
  60. 60.
    Vila R, Ponte I, Collado M et al. DNA-induced alpha-helical structure in the NH2-terminal domain of histone H1. J Biol Chem 2001; 276(49):46429–46435.PubMedCrossRefGoogle Scholar
  61. 61.
    Hill CS, Martin SR, Thomas JO. A stable alpha-helical element in the carboxy-terminal domain of free and chromatin-bound histone H1 from sea urchin sperm. EMBO J 1989; 8(9):2591–2599.PubMedGoogle Scholar
  62. 62.
    Clark DJ, Hill CS, Martin SR et al. Alpha-helix in the carboxy-terminal domains of histones H1 and H5. EMBO Journal 1988; 7(1):69–75.PubMedGoogle Scholar
  63. 63.
    Bradbury EM, Cary PD, Chapman GE et al. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The conformation of histone H1. Eur J Biochem 1975; 52(3):605–613.PubMedCrossRefGoogle Scholar
  64. 64.
    Vila R, Ponte I, Jimenez MA et al. A helix-turn motif in the C-terminal domain of histone H1. Protein Science 2000; 9(4):627–636.PubMedCrossRefGoogle Scholar
  65. 65.
    Vila R, Ponte I, Collado M et al. Induction of secondary structure in a COOH-terminal peptide of histone H1 by interaction with the DNA: an infrared spectroscopy study. J Biol Chem 2001; 276(33):30898–30903.PubMedCrossRefGoogle Scholar
  66. 66.
    Roque A, Ilboro I, Arrondo et al. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1. J Biol Chem 2005; 280(37):32141–32147.PubMedCrossRefGoogle Scholar
  67. 67.
    Dyson HJ, Rance M, Houghten RA et al. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol 1988; 201(1):161–200.PubMedCrossRefGoogle Scholar
  68. 68.
    Hansen JC, Lu X, Ross ED et al. Intrinsic protein disorder, amino acid composition and histone terminal domains. J Biol Chem 2006; 281(4):1853–1856.PubMedCrossRefGoogle Scholar
  69. 69.
    Ponte I, Vila R, Suau P. Sequence complexity of histone H1 subtypes. Mol Biol Evol 2003; 20(3):371–380.PubMedCrossRefGoogle Scholar
  70. 70.
    Van Holde K. Chromatin. New York: Springer-Verlag, 1988.Google Scholar
  71. 71.
    Wolffe A. Chromatin: structure and function. 3rd edition. San Diego: Academic Press; 1998.Google Scholar
  72. 72.
    Subirana JA. Analysis of the charge distribution in the C-terminal region of histone H1 as related to its interaction with DNA. Biopolymers 1990; 29(10–11):1351–1357.PubMedCrossRefGoogle Scholar
  73. 73.
    Tompa P. Structure and funtion of intrisically dissordered proteins. Chapman and Hall: CRC Press, 2010.Google Scholar
  74. 74.
    Tompa P, Fuxreiter M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci 2008; 33(1):2–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Misteli T, Gunjan A, Hock R et al. Dynamic binding of histone H1 to chromatin in living cells. Nature 2000; 408(6814):877–881.PubMedCrossRefGoogle Scholar
  76. 76.
    Lu X, Hamkalo B, Parseghian MH et al. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 2009; 48(1):164–172.PubMedCrossRefGoogle Scholar
  77. 77.
    Montes de Oca R, Lee KK, Wilson KL. Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. Journal of Biological Chemistry 2005; 280(51):42252–42262.PubMedCrossRefGoogle Scholar
  78. 78.
    Widlak P, Kalinowska M, Parseghian MH et al. The histone H1 C-terminal domain binds to the apoptotic nuclease, DNA fragmentation factor (DFF40/CAD) and stimulates DNA cleavage. Biochemistry 2005; 44(21):7871–7878.PubMedCrossRefGoogle Scholar
  79. 79.
    McBryant SJ, Lu X, Hansen JC. Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 2010;20(5):519–28.PubMedCrossRefGoogle Scholar
  80. 80.
    Langan TA, Gautier J, Lohka M et al. Mammalian growth-associated H1 histone kinase: a homolog of CDC2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol Cell Biol 1989; 9(9):3860–3868.PubMedGoogle Scholar
  81. 81.
    Hendzel MJ, Lever MA, Crawford E et al. The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem 2004; 279(19):20028–20034.PubMedCrossRefGoogle Scholar
  82. 82.
    Green GR, Lee HJ, Poccia DL. Phosphorylation weakens DNA binding by peptides containing multiple “SPKK” sequences. J Biol Chem 1993; 268(15):11247–11255.PubMedGoogle Scholar
  83. 83.
    Roth SY, Allis CD. Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem Sci 1992; 17(3):93–98.PubMedCrossRefGoogle Scholar
  84. 84.
    Gurley LR, D’Anna JA, Barham SS et al. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 1978; 84(1):1–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Bradbury EM, Inglis RJ, Matthews HR et al. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. Eur J Biochem 1973; 33(1):131–139.PubMedCrossRefGoogle Scholar
  86. 86.
    Hohmann P. Phosphorylation of H1 histones. Mol Cell Biochem 1983; 57(1):81–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Talasz H, Helliger W, Puschendorf B et al. In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry 1996; 35(6):1761–1767.PubMedCrossRefGoogle Scholar
  88. 88.
    Thiriet C, Hayes JJ. Linker histone phosphorylation regulates global timing of replication origin firing. J Biol Chem 2009; 284(5):2823–2829.PubMedCrossRefGoogle Scholar
  89. 89.
    Lever MA, Thing JP, Sun X et al. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 2000; 408(6814):873–876.PubMedCrossRefGoogle Scholar
  90. 90.
    Th’ng JP, Guo XW, Swank RA et al. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation. J Biol Chem 1994; 269(13):9568–9573.Google Scholar
  91. 91.
    Hale TK, Contreras A, Morrison AJ et al. Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1alpha. Mol Cell 2006; 22(5):693–699.PubMedCrossRefGoogle Scholar
  92. 92.
    Luger K, Mader AW, Richmond RK et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389(6648):251–260.PubMedCrossRefGoogle Scholar
  93. 93.
    Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60:2126–2132.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyColorado State UniversityColoradoUSA

Personalised recommendations