Advertisement

Fuzziness pp 159-183 | Cite as

Structural Disorder and Protein Elasticity

  • Sarah Rauscher
  • Régis Pomès
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 725)

Abstract

An emerging class of disordered proteins underlies the elasticity of many biological tissues. Elastomeric proteins are essential to the function of biological machinery as diverse as the human arterial wall, the capture spiral of spider webs and the jumping mechanism of fleas. In this chapter, we review what is known about the molecular basis and the functional role of structural disorder in protein elasticity. In general, the elastic recoil of proteins is due to a combination of internal energy and entropy. In rubber-like elastomeric proteins, the dominant driving force is the increased entropy of the relaxed state relative to the stretched state. Aggregates of these proteins are intrinsically disordered or fuzzy, with high polypeptide chain entropy. We focus our discussion on the sequence, structure and function of five rubber-like elastomeric proteins, elastin, resilin, spider silk, abductin and ColP. Although we group these disordered elastomers together into one class of proteins, they exhibit a broad range of sequence motifs, mechanical properties and biological functions. Understanding how sequence modulates both disorder and elasticity will help advance the rational design of elastic biomaterials such as artificial skin and vascular grafts.

Keywords

Spider Silk Protein Elasticity Capture Spiral Dominant Drive Force Elastomeric Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gosline J, Lillie M, Carrington E et al. Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond Ser B-Biol Sci 2002; 357(1418):121–132.CrossRefGoogle Scholar
  2. 2.
    Mark JE. Rubber Elasticity. J Chem Educ 1981; 58(11):898–903.CrossRefGoogle Scholar
  3. 3.
    Mark JE, Erman B. Rubberlike elasticity: A molecular primer. Cambridge: Cambridge University Press; 2007.CrossRefGoogle Scholar
  4. 4.
    Muiznieks LD, Weiss AS, Keeley FW. Structural disorder and dynamics of elastin. Biochem Cell Biol 2010; 88(2):239–250.PubMedCrossRefGoogle Scholar
  5. 5.
    Woessner JF, Brewer TH. Formation and breakdown of collagen and elastin in human uterus during pregnancy and postpartum involution. Biochem J 1963; 89(1):75–82.PubMedGoogle Scholar
  6. 6.
    Weis-Fogh T. A rubber-like protein in insect cuticle. J Exp Biol 1960; 37(4):889–907.Google Scholar
  7. 7.
    Bennet-Clark HC, Lucey ECA. The jump of a flea: A study of the energetics and a model of the mechanism. J Exp Biol 1967; 47(1):59–76.PubMedGoogle Scholar
  8. 8.
    Gosline JM, Demont ME, Denny MW. The structure and properties of spider silk. Endeavour 1986; 10(1):37–43.CrossRefGoogle Scholar
  9. 9.
    Alexander RM. Rubber-like properties of the inner hinge-ligament of Pectinidae. J Exp Biol 1966; 44(1):119–130.PubMedGoogle Scholar
  10. 10.
    Kelly RE, Rice RV. Abductin: A rubber-like protein from the internal triangular hinge ligament of Pecten. Science 1967; 155(3759):208–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Denny M, Miller L. Jet propulsion in the cold: mechanics of swimming in the Antarctic scallop Adamussium colbecki. J Exp Biol 2006; 209(22):4503–4514.PubMedCrossRefGoogle Scholar
  12. 12.
    Waite JH, Vaccaro E, Sun CJ et al. Elastomeric gradients: a hedge against stress concentration in marine holdfasts? Philos Trans R Soc Lond Ser B-Biol Sci 2002; 357(1418):143–153. Structural Disorder and Protein Elas ticity 181CrossRefGoogle Scholar
  13. 13.
    Elvin CM, Carr AG, Huson MG et al. Synthesis and properties of crosslinked recombinant proresilin. Nature 2005; 437(7061):999–1002.PubMedCrossRefGoogle Scholar
  14. 14.
    Bellingham CM, Lillie MA, Gosline JM et al. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 2003; 70(4):445–455.PubMedCrossRefGoogle Scholar
  15. 15.
    Bella J, Eaton M, Brodsky B et al. Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 1994; 266(5182):75–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Rauscher S, Baud S, Miao M et al. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 2006; 14(11):1667–1676.PubMedCrossRefGoogle Scholar
  17. 17.
    Pometun MS, Chekmenev EY, Wittebort RJ. Quantitative observation of backbone disorder in native elastin. J Biol Chem 2004; 279(9):7982–7987.PubMedCrossRefGoogle Scholar
  18. 18.
    Andrady AL, Mark JE. Thermoelasticity of swollen elastin networks at constant composition. Biopolymers 1980; 19(4):849–855.CrossRefGoogle Scholar
  19. 19.
    Shewry PR, Tatham AS, Bailey AJ eds. Elastomeric proteins: Structures, biomechanical properties and biological roles. Cambridge: Cambridge University Press; 2002.Google Scholar
  20. 20.
    Alexander RM. Animal Mechanics. Worcester: Macmillan and Co Ltd; 1983.Google Scholar
  21. 21.
    Miserez A, Wasko SS, Carpenter CF et al. Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. Nature Materials 2009; 8(11):910–916.PubMedCrossRefGoogle Scholar
  22. 22.
    Tatham AS, Shewry PR. Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 2000; 25(11):567–571.PubMedCrossRefGoogle Scholar
  23. 23.
    Mark JE. Molecular aspects of rubberlike elasticity. Angew Makromol Chem 1992; 202:1–30.CrossRefGoogle Scholar
  24. 24.
    Tatham AS, Shewry PR. Comparative structures and properties of elastic proteins. Philos Trans R Soc Lond Ser B-Biol Sci 2002; 357(1418):229–234.CrossRefGoogle Scholar
  25. 25.
    Weis-Fogh T. Thermodynamic properties of resilin, a rubber-like protein. J Mol Biol 1961; 3(5):520–531.CrossRefGoogle Scholar
  26. 26.
    Gosline JM, Denny MW, DeMont ME. Spider silk as rubber. Nature 1984; 309(5968):551–552.CrossRefGoogle Scholar
  27. 27.
    Kahler GA, Fisher FM, Sass RL. The chemical composition and mechanical properties of the hinge ligament in bivalve molluscs. Biol Bull 1976; 151(1):161–181.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoeve CAJ, Flory PJ. The elastic properties of elastin. Biopolymers 1974; 13(4):677–686.PubMedCrossRefGoogle Scholar
  29. 29.
    Vrhovski B, Weiss AS. Biochemistry of tropoelastin. Eur J Biochem 1998; 258(1):1–18.PubMedCrossRefGoogle Scholar
  30. 30.
    Starcher BC. Determination of the elastin content of tissues by measuring desmosine and isodesmosine. Anal Biochem 1977; 79(1–2):11–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Gibbons CA, Shadwick RE. Circulatory mechanics in the toad Bufo marinus I. Structure and mechanical design of the aorta. J Exp Biol 1991; 158:275–289.Google Scholar
  32. 32.
    Shadwick RE. Mechanical design in arteries. J Exp Biol 1999; 202(23):3305–3313.PubMedGoogle Scholar
  33. 33.
    Starcher B, Percival S. Elastin turnover in the rat uterus. Connect Tissue Res 1985; 13(3):207–215.PubMedCrossRefGoogle Scholar
  34. 34.
    Miao M, Bellingham CM, Stahl RJ et al. Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 2003; 278(49):48553–48562.PubMedCrossRefGoogle Scholar
  35. 35.
    Tamburro AM, Bochicchio B, Pepe A. Dissection of human tropoelastin: Exon-by-exon chemical synthesis and related conformational studies. Biochemistry 2003; 42(45):13347–13362.PubMedCrossRefGoogle Scholar
  36. 36.
    Urry DW, Hugel T, Seitz M et al. Elastin: A representative ideal protein elastomer. Philos Trans R Soc Lond Ser B-Biol Sci 2002; 357(1418):169–184.CrossRefGoogle Scholar
  37. 37.
    Becker N, Oroudjev E, Mutz S et al. Molecular nanosprings in spider capture-silk threads. Nature Materials 2003; 2(4):278–283.PubMedCrossRefGoogle Scholar
  38. 38.
    Aaron BB, Gosline JM. Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers. Biopolymers 1981; 20(6):1247–1260.CrossRefGoogle Scholar
  39. 39.
    Dorrington KL, McCrum NG. Elastin as a rubber. Biopolymers 1977; 16(6):1201–1222.PubMedCrossRefGoogle Scholar
  40. 40.
    Perry A, Stypa MP, Tenn BK et al. Solid-state 13C NMR reveals effects of temperature and hydration on elastin. Biophys J 2002; 82(2):1086–1095.PubMedCrossRefGoogle Scholar
  41. 41.
    Muiznieks LD, Jensen SA, Weiss AS. Structural changes and facilitated association of tropoelastin. Arch Biochem Biophys 2003; 410(2):317–323.PubMedCrossRefGoogle Scholar
  42. 42.
    Bochicchio B, Floquet N, Pepe A et al. Dissection of human tropoelastin: Solution structure, dynamics and self-assembly of the exon 5 peptide. Chem Eur J 2004; 10(13):3166–3176.PubMedCrossRefGoogle Scholar
  43. 43.
    Bochicchio B, Pepe A, Tamburro AM. Investigating by CD the molecular mechanism of elasticity of elastomeric proteins. Chirality 2008; 20(9):985–994.PubMedCrossRefGoogle Scholar
  44. 44.
    Glaves R, Baer M, Schreiner E et al. Conformational dynamics of minimal elastin-like polypeptides: The role of proline revealed by molecular dynamics and nuclear magnetic resonance. ChemPhysChem 2008; 9(18):2759–2765.PubMedCrossRefGoogle Scholar
  45. 45.
    Rauscher S, Neale C, Pomès R. Simulated tempering distributed replica sampling, virtual replica exchange and other generalized-ensemble methods for conformational sampling. J Chem Theor Comput 2009; 5(10):2640–2662.CrossRefGoogle Scholar
  46. 46.
    Baer M, Schreiner E, Kohlmeyer A et al. Inverse temperature transition of a biomimetic elastin model: Reactive flux analysis of folding/unfolding and its coupling to solvent dielectric relaxation. J Phys Chem B 2006; 110(8):3576–3587.PubMedCrossRefGoogle Scholar
  47. 47.
    Rauscher S, Pomès R. Molecular simulations of protein disorder. Biochem Cell Biol 2010; 88(2):269–290.PubMedCrossRefGoogle Scholar
  48. 48.
    Li B, Alonso DOV, Daggett V. The molecular basis for the inverse temperature transition of elastin. J Mol Biol 2001; 305(3):581–592.PubMedCrossRefGoogle Scholar
  49. 49.
    Vendruscolo M, Dobson CM. Towards complete descriptions of the free energy landscape of proteins. Phil Trans R Soc Lond A 2005; 363:433–452.CrossRefGoogle Scholar
  50. 50.
    Zagrovic B, Lipfert J, Sorin EJ et al. Unusual compactness of a polyproline type II structure. Proc Natl Acad Sci USA 2005; 102:11698–11703.PubMedCrossRefGoogle Scholar
  51. 51.
    Tompa P. Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins. FEBS J 2009; 276(19):5406–5415.PubMedCrossRefGoogle Scholar
  52. 52.
    Dyksterhuis LB, Carter EA, Mithieux SM et al. Tropoelastin as a thermodynamically unfolded premolten globule protein: The effect of trimethylamine N-oxide on structure and coacervation. Arch Biochem Biophys 2009; 487(2):79–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Bennet-Clark H. The first description of resilin. J Exp Biol 2007; 210(22):3879–3881.PubMedCrossRefGoogle Scholar
  54. 54.
    Bennet-Clark HC. Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae. J Exp Biol 1997; 200(11):1681–1694.PubMedGoogle Scholar
  55. 55.
    Dillinger SCG, Kesel AB. Changes in the structure of the cuticle of Ixodes ricinus L. 1758 (Acari, Ixodidae) during feeding. Arthropod Structure and Development 2002; 31(2):95–101.PubMedCrossRefGoogle Scholar
  56. 56.
    Charati MB, Ifkovits JL, Burdick JA et al. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 2009; 5(18):3412–3416.PubMedCrossRefGoogle Scholar
  57. 57.
    Tamburro AM, Panariello S, Santopietro V et al. Molecular and supramolecular structural studies on significant repetitive sequences of resilin. ChemBioChem 2010; 11(1):83–93.PubMedCrossRefGoogle Scholar
  58. 58.
    Ardell DH, Andersen SO. Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol 2001; 31(10):965–970.PubMedCrossRefGoogle Scholar
  59. 59.
    Elliott GF, Huxley AF, Weis-Fogh T. On the structure of resilin. J Mol Biol 1965; 13(3):791–795.CrossRefGoogle Scholar
  60. 60.
    Nairn KM, Lyons RE, Mulder RJ et al. A synthetic resilin is largely unstructured. Biophys J 2008; 95(7):3358–3365.PubMedCrossRefGoogle Scholar
  61. 61.
    Dicko C, Porter D, Bond J et al. Structural disorder in silk proteins reveals the emergence of elastomericity. Biomacromolecules 2008; 9(1):216–221.PubMedCrossRefGoogle Scholar
  62. 62.
    Hayashi CY, Lewis RV. Spider flagelliform silk: lessons in protein design, gene structure and molecular evolution. Bioessays 2001; 23(8):750–756.PubMedCrossRefGoogle Scholar
  63. 63.
    Gosline JM, Guerette PA, Ortlepp CS et al. The mechanical design of spider silks: From fibroin sequence to mechanical function. J Exp Biol 1999; 202(23):3295–3303.PubMedGoogle Scholar
  64. 64.
    Vollrath F, Porter D. Silks as ancient models for modern polymers. Polymer 2009; 50(24):5623–5632.CrossRefGoogle Scholar
  65. 65.
    Teulé F, Furin WA, Cooper AR et al. Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 2007; 42(21):8974–8985.CrossRefGoogle Scholar
  66. 66.
    Vendrely C, Scheibel T. Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 2007; 7(4):401–409.PubMedCrossRefGoogle Scholar
  67. 67.
    Ohgo K, Kawase T, Ashida J et al. Solid-state NMR analysis of a peptide (Gly-Pro-Gly-Gly-Ala)6-Gly derived from a flagelliform silk sequence of Nephila clavipes. Biomacromolecules 2006; 7(4):1210–1214.PubMedCrossRefGoogle Scholar
  68. 68.
    Rousseau ME, Lefèvre T, Pézolet M. Conformation and Orientation of Proteins in Various Types of Silk Fibers Produced by Nephila clavipes Spiders. Biomacromolecules 2009; 10(10):2945–2953.PubMedCrossRefGoogle Scholar
  69. 69.
    Vogel S. Animal locomotion—Squirt smugly, scallop! Nature 1997; 385(6611):21–22.CrossRefGoogle Scholar
  70. 70.
    Bochicchio B, Jimenez-Oronoz F, Pepe A et al. Synthesis of and structural studies on repeating sequences of abductin. Macromol Biosci 2005; 5(6):502–511.PubMedCrossRefGoogle Scholar
  71. 71.
    Cao QP, Wang YJ, Bayley H. Sequence of abductin, the molluscan ‘rubber’ protein. Curr Biol 1997; 7(11):R677–R678.PubMedCrossRefGoogle Scholar
  72. 72.
    Coyne KJ, Qin XX, Waite JH. Extensible collagen in mussel byssus: A natural block copolymer. Science 1997; 277(5333):1830–1832.PubMedCrossRefGoogle Scholar
  73. 73.
    Hagenau A, Scheidt HA, Serpell L et al. Structural Analysis of Proteinaceous Components in Byssal Threads of the Mussel Mytilus galloprovincialis. Macromol Biosci 2009; 9(2):162–168.PubMedCrossRefGoogle Scholar
  74. 74.
    Brazee SL, Carrington E. Interspecific comparison of the mechanical properties of mussel byssus. Biol Bull 2006; 211(3):263–274.PubMedCrossRefGoogle Scholar
  75. 75.
    Deming TJ. Mussel byssus and biomolecular materials. Curr Opin Chem Biol 1999; 3(1):100–105.PubMedCrossRefGoogle Scholar
  76. 76.
    Bondos SE. Roles for intrinsic disorder and fuzziness in generating context-specific function in ultrabithorax, a hox transcription factor. In: Fuxreiter M, Tompa P, eds. Fuzziness: Structural Disorder in Protein Complexes. Austin/New York: Landes Bioscience/Springer Science+Business Media, 2010:86–105.Google Scholar
  77. 77.
    Greer AM, Huang Z, Oriakhi A et al. The Drosophila transcription factor ultrabithorax self-assembles into protein-based biomaterials with multiple morphologies. Biomacromolecules 2009; 10(4):829–837.PubMedCrossRefGoogle Scholar
  78. 78.
    Shadwick RE, Gosline JM. Physical and chemical properties of rubber-like elastic fibers from the octopus aorta. J Exp Biol 1985; 114:239–257.Google Scholar
  79. 79.
    Kim W, Conticello VP. Protein engineering methods for investigation of structure-function relationships in protein-based elastomeric materials. Polymer Reviews 2007; 47(1):93–119.CrossRefGoogle Scholar
  80. 80.
    Romero P, Obradovic Z, Li XH et al. Sequence complexity of disordered protein. Proteins 2001; 42(1):38–48.PubMedCrossRefGoogle Scholar
  81. 81.
    Tompa P. Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 2003; 25(9):847–855.PubMedCrossRefGoogle Scholar
  82. 82.
    Petkova AT, Ishii Y, Balbach JJ et al. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 2002; 99(26):16742–16747.PubMedCrossRefGoogle Scholar
  83. 83.
    Fowler DM, Koulov AV, Balch WE et al. Functional amyloid—from bacteria to humans. Trends Biochem Sci 2007; 32(5):217–224.PubMedCrossRefGoogle Scholar
  84. 84.
    Monsellier E, Chiti F. Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Reports 2007; 8(8):737–742.PubMedCrossRefGoogle Scholar
  85. 85.
    Dobson CM. Protein folding and misfolding. Nature 2003; 426(6968):884–890.PubMedCrossRefGoogle Scholar
  86. 86.
    Watt B, van Niel G, Fowler DM et al. N-terminal domains elicit formation of functional Pmel17 amyloid fibrils. J Biol Chem 2009; 284(51):35543–35555.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang X, Zhou Y, Ren JJ et al. Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci USA 2010; 107(1):163–168.PubMedCrossRefGoogle Scholar
  88. 88.
    Tamburro AM, Pepe A, Bochicchio B et al. Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin. J Biol Chem 2005; 280(4):2682–2690.PubMedCrossRefGoogle Scholar
  89. 89.
    Savage KN, Gosline JM. The role of proline in the elastic mechanism of hydrated spider silks. J Exp Biol 2008; 211(12):1948–1957.PubMedCrossRefGoogle Scholar
  90. 90.
    Savage KN, Gosline JM. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties. J Exp Biol 2008; 211(12):1937–1947.PubMedCrossRefGoogle Scholar
  91. 91.
    Liu Y, Sponner A, Porter D et al. Proline and processing of spider silks. Biomacromolecules 2008; 9(1):116–121.PubMedCrossRefGoogle Scholar
  92. 92.
    Andersen SO. Isolation of a new type of cross link from hinge ligament protein of molluscs. Nature 1967; 216(5119):1029–1030.PubMedCrossRefGoogle Scholar
  93. 93.
    Waite JH, Lichtenegger HC, Stucky GD et al. Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 2004; 43(24):7653–7662.CrossRefGoogle Scholar
  94. 94.
    Chung MIS, Miao M, Stahl RJ et al. Sequences and domain structures of mammalian, avian, amphibian and teleost tropoelastins: Clues to the evolutionary history of elastins. Matrix Biol 2006; 25(8):492–504.PubMedCrossRefGoogle Scholar
  95. 95.
    Djajamuliadi J, Kagawa TF, Ohgo K et al. Insights into a putative hinge region in elastin using molecular dynamics simulations. Matrix Biol 2009; 28(2):92–100.CrossRefGoogle Scholar
  96. 96.
    Blackledge TA, Hayashi CY. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol 2006; 209(13):2452–2461.PubMedCrossRefGoogle Scholar
  97. 97.
    Pettersen EF, Goddard TD, Huang CC et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13):1605–1612.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of TorontoCanada
  2. 2.Molecular Structure and FunctionHospital for Sick ChildrenCanada

Personalised recommendations