Advertisement

Autosomal Recessive Charcot-Marie-Tooth Neuropathy

  • Carmen EspinósEmail author
  • Eduardo Calpena
  • Dolores Martínez-Rubio
  • Vincenzo Lupo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 724)

Abstract

Charcot-Marie-Tooth (CMT) disease, a hereditary motor and sensory neuropathy that comprises a complex group of more than 50 diseases, is the most common inherited neuropathy. CMT is generally divided into demyelinating forms, axonal forms and intermediate forms. CMT is also characterized by a wide genetic heterogeneity with 29 genes and more than 30 loci involved. The most common pattern of inheritance is autosomal dominant (AD), although autosomal recessive (AR) forms are more frequent in Mediterranean countries. In this chapter we give an overview of the associated genes, mechanisms and epidemiology of AR-CMT forms and their associated phenotypes.

Keywords

Amyotrophic Lateral Sclerosis Autosomal Recessive Inheritance Axonal Neuropathy Autosomal Recessive PMP22 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Combarros O, Calleja J, Polo JM et al. Prevalence of hereditary motor and sensory neuropathy in Cantabria. Acta Neurol Scand 1987; 75:9–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin Genet 1974; 6:98–118.PubMedCrossRefGoogle Scholar
  3. 3.
    Reilly MM. Axonal Charcot-Marie-Tooth disease: the fog is slowly lifting! Neurology 2005; 65:186–187.PubMedCrossRefGoogle Scholar
  4. 4.
    Boerkoel CF, Takashima H, Garcia CA et al. Charcot-Marie-Tooth disease and related neuropathies: mutation distribution and genotype-phenotype correlation. Ann Neurol 2002; 51:190–201.PubMedCrossRefGoogle Scholar
  5. 5.
    Zuchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004; 36:449–451.PubMedCrossRefGoogle Scholar
  6. 6.
    Lawson VH, Graham BV, Flanigan KM. Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology 2005; 65:197–204.PubMedCrossRefGoogle Scholar
  7. 7.
    Szigeti K, Nelis E, Lupski JR. Molecular diagnostics of Charcot-Marie-Tooth disease and related peripheral neuropathies. Neuromolecular Med 2006; 8:243–254.PubMedGoogle Scholar
  8. 8.
    Vallat JM, Grid D, Magdelaine C et al. Autosomal recessive forms of Charcot-Marie-Tooth disease. Curr Neurol Neurosci Rep 2004; 4:413–419.PubMedCrossRefGoogle Scholar
  9. 9.
    Nicholson GA, Magdelaine C, Zhu D et al. Severe early-onset axonal neuropathy with homozygous and compound heterozygous MFN2 mutations. Neurology 2008; 70:1678–1681.PubMedCrossRefGoogle Scholar
  10. 10.
    Yum SW, Zhang J, Mo K et al. A novel recessive Nefl mutation causes a severe, early-onset axonal neuropathy. Ann Neurol 2009; 66:759–770.PubMedCrossRefGoogle Scholar
  11. 11.
    Houlden H, Laura M, Wavrant-De Vrieze F et al. Mutations in the HSP27 (HSPB1) gene cause dominant, recessive and sporadic distal HMN/CMT type 2. Neurology 2008; 71:1660–1668.PubMedCrossRefGoogle Scholar
  12. 12.
    Martínez-Rubio MD, Jaijo T, Sevilla T et al. Rationalisation of molecular diagnosis of the Charcot-Marie-Tooth neuropathy. Third International Charcot-Marie-Tooth Consortium Meeting. Antwerpen (Belgium) 2009.Google Scholar
  13. 13.
    Cuesta A, Pedrola L, Sevilla T et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet 2002; 30:22–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Baxter RV, Ben Othmane K, Rochelle JM et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet 2002; 30:21–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Nelis E, Erdem S, Van Den Bergh PY et al. Mutations in GDAP1: autosomal recessive CMT with demyelination and axonopathy. Neurology 2002; 59:1865–1872.PubMedGoogle Scholar
  16. 16.
    Birouk N, Azzedine H, Dubourg O et al. Phenotypical features of a Moroccan family with autosomal recessive Charcot-Marie-Tooth disease associated with the S194X mutation in the GDAP1 gene. Archives of neurology 2003; 60:598–604.PubMedCrossRefGoogle Scholar
  17. 17.
    Senderek J, Bergmann C, Ramaekers VT et al. Mutations in the ganglioside-induced differentiation-associated protein-1 (GDAP1) gene in intermediate type autosomal recessive Charcot-Marie-Tooth neuropathy. Brain 2003; 126:642–649.PubMedCrossRefGoogle Scholar
  18. 18.
    Claramunt R, Pedrola L, Sevilla T et al. Genetics of Charcot-Marie-Tooth disease type 4A: mutations, inheritance, phenotypic variability and founder effect. Journal of medical genetics 2005; 42:358–365.PubMedCrossRefGoogle Scholar
  19. 19.
    Chung KW, Kim SM, Sunwoo IN et al. A novel GDAP1 Q218E mutation in autosomal dominant Charcot-Marie-Tooth disease. J Hum Genet 2008; 53:360–364.PubMedCrossRefGoogle Scholar
  20. 20.
    Cassereau J, Chevrollier A, Gueguen N et al. Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-Marie-Tooth disease (CMT2K). Neurogenetics 2009; 10:145–150.PubMedCrossRefGoogle Scholar
  21. 21.
    Cavallaro T, Ferrarini M, Taioli F et al. Autosomal dominant Charcot-Marie-Tooth disease type 2 associated with GDAP1 gene. Third International Charcot-Marie-Tooth Consortium Meeting. Antwerpen (Belgium) 2009.Google Scholar
  22. 22.
    Kabzinska D, Strugalska-Cynowska H, Kostera-Pruszczyk A et al. L239F founder mutation in GDAP1 is associated with a mild Charcot-Marie-Tooth type 4C4 (CMT4C4) phenotype. Neurogenetics 2010.Google Scholar
  23. 23.
    Pedrola L, Espert A, Valdes-Sanchez T et al. Cell expression of GDAP1 in the nervous system and pathogenesis of Charcot-Marie-Tooth type 4A disease. J Cell Mol Med 2008; 12:679–689.PubMedCrossRefGoogle Scholar
  24. 24.
    Pedrola L, Espert A, Wu X et al. GDAP1, the protein causing Charcot-Marie-Tooth disease type 4A, is expressed in neurons and is associated with mitochondria. Hum Mol Genet 2005; 14:1087–1094.PubMedCrossRefGoogle Scholar
  25. 25.
    Niemann A, Ruegg M, La Padula V et al. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. The Journal of Cell Biology 2005.Google Scholar
  26. 26.
    Niemann A, Wagner KM, Ruegg M et al. GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis 2009; 2009:509–520.Google Scholar
  27. 27.
    Wagner KM, Ruegg M, Niemann A et al. Targeting and function of the mitochondrial fission factor GDAP1 are dependent on its tail-anchor. PLoS One 2009; 4:e5160.PubMedCrossRefGoogle Scholar
  28. 28.
    Sevilla T, Cuesta A, Chumillas MJ et al. Clinical, electrophysiological and morphological findings of Charcot-Marie-Tooth neuropathy with vocal cord palsy and mutations in the GDAP1 gene. Brain 2003; 126:2023–2033.PubMedCrossRefGoogle Scholar
  29. 29.
    Azzedine H, Ruberg M, Ente D et al. Variability of disease progression in a family with autosomal recessive CMT associated with a S194X and new R310Q mutation in the GDAP1 gene. Neuromuscul Disord 2003; 13:341–346.PubMedGoogle Scholar
  30. 30.
    Sevilla T, Jaijo T, Nauffal D et al. Vocal cord paresis and diaphragmatic dysfunction are severe and frequent symptoms of GDAP1-associated neuropathy. Brain 2008; 131:3051–3061.PubMedCrossRefGoogle Scholar
  31. 31.
    Senderek J, Bergmann C, Stendel C et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. American journal of human genetics 2003; 73:1106–1119.PubMedCrossRefGoogle Scholar
  32. 32.
    Lupo V, Galindo MI, Martinez-Rubio D et al. Missense mutations in the SH3TC2 protein causing Charcot-Marie-Tooth disease type 4C affect its localization in the plasma membrane and endocytic pathway. Hum Mol Genet 2009; 18: 4603–4614.PubMedCrossRefGoogle Scholar
  33. 33.
    Azzedine H, Ravise N, Verny C et al. Spine deformities in Charcot-Marie-Tooth 4C caused by SH3TC2 gene mutations. Neurology 2006; 67:602–606.PubMedCrossRefGoogle Scholar
  34. 34.
    Houlden H, Laura M, Ginsberg L et al. The phenotype of Charcot-Marie-Tooth disease type 4C due to SH3TC2 mutations and possible predisposition to an inflammatory neuropathy. Neuromuscul Disord 2009; 19:264–269.PubMedCrossRefGoogle Scholar
  35. 35.
    Roberts RC, Peden AA, Buss F et al. Mistargeting of SH3TC2 away from the recycling endosome causes Charcot-Marie-Tooth disease type 4C. Hum Mol Genet 2010; 19:1009–1018.PubMedCrossRefGoogle Scholar
  36. 36.
    Stendel C, Roos A, Kleine H et al. SH3TC2, a protein mutant in Charcot-Marie-Tooth neuropathy, links peripheral nerve myelination to endosomal recycling. Brain 2010; 133:2462–2474.PubMedCrossRefGoogle Scholar
  37. 37.
    Arnaud E, Zenker J, de Preux Charles AS et al. SH3TC2/KIAA1985 protein is required for proper myelination and the integrity of the node of Ranvier in the peripheral nervous system. Proc Natl Acad Sci USA 2009; 106:17528–17533.PubMedCrossRefGoogle Scholar
  38. 38.
    Gosselin I, Thiffault I, Tetreault M et al. Founder SH3TC2 mutations are responsible for a CMT4C French-Canadians cluster. Neuromuscul Disord 2008; 18:483–492.PubMedCrossRefGoogle Scholar
  39. 39.
    Laura M, Houlden H, Blake J et al. Charcot-Marie-Tooth tyoe 4C caused by mutation of KIAA1985 gene: report of 5 families with variable phenotype. Third International Charcot-Marie-Tooth Consortium Meeting Antwerpen (Belgium) 2009.Google Scholar
  40. 40.
    Lassuthová P, Mazanec R, Haberlová J et al. High frequency of SH3TC2 (KIAA1985) mutations in Czech HMSN I patients. Third International Charcot-Marie-Tooth Consortium Meeting. Antwerpen (Belgium) 2009.Google Scholar
  41. 41.
    Claramunt R, Sevilla T, Lupo V et al. The p.R1109X mutation in SH3TC2 gene is predominant in Spanish Gypsies with Charcot-Marie-Tooth disease type 4. Clinical Genetics 2007; 71:343–349.PubMedCrossRefGoogle Scholar
  42. 42.
    Kalaydjieva L, Gresham D, Gooding R et al. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. American Journal of Human Genetics 2000; 67:47–58.PubMedCrossRefGoogle Scholar
  43. 43.
    LeGuern E, Guilbot A, Kessali M et al. Homozygosity mapping of an autosomal recessive form of demyelinating Charcot-Marie-Tooth disease to chromosome 5q23-q33. Hum Mol Genet 1996; 5:1685–1688.PubMedCrossRefGoogle Scholar
  44. 44.
    Azzedine H, Bolino A, Taieb T et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. American Journal of Human Genetics 2003; 72:1141–1153.PubMedCrossRefGoogle Scholar
  45. 45.
    Senderek J, Bergmann C, Weber S et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet 2003; 12:349–356.PubMedCrossRefGoogle Scholar
  46. 46.
    Bolino A, Muglia M, Conforti FL et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 2000; 25:17–19.PubMedCrossRefGoogle Scholar
  47. 47.
    Previtali SC, Zerega B, Sherman DL et al. Myotubularin-related 2 protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Mol Genet 2003; 12:1713–1723.PubMedCrossRefGoogle Scholar
  48. 48.
    Berger P, Berger I, Schaffitzel C et al. Multi-level regulation of myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-13/set-binding factor-2. Hum Mol Genet 2006; 15:569–579.PubMedCrossRefGoogle Scholar
  49. 49.
    Hirano R, Takashima H, Umehara F et al. SET binding factor 2 (SBF2) mutation causes CMT4B with juvenile onset glaucoma. Neurology 2004; 63:577–580.PubMedGoogle Scholar
  50. 50.
    Topilko P, Schneider-Maunoury S, Levi G et al. Krox-20 controls myelination in the peripheral nervous system. Nature 1994; 371:796–799.PubMedCrossRefGoogle Scholar
  51. 51.
    Le N, Nagarajan R, Wang JY et al. Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci USA 2005; 102:2596–2601.PubMedCrossRefGoogle Scholar
  52. 52.
    LeBlanc SE, Ward RM, Svaren J. Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol 2007; 27:3521–3529.PubMedCrossRefGoogle Scholar
  53. 53.
    Decker L, Desmarquet-Trin-Dinh C, Taillebourg E et al. Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci 2006; 26:9771–9779.PubMedCrossRefGoogle Scholar
  54. 54.
    Szigeti K, Wiszniewski W, Saifi GM et al. Functional, histopathologic and natural history study of neuropathy associated with EGR2 mutations. Neurogenetics 2007; 8:257–262.PubMedCrossRefGoogle Scholar
  55. 55.
    Warner LE, Mancias P, Butler IJ et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 1998; 18:382–384.PubMedCrossRefGoogle Scholar
  56. 56.
    Harati Y, Butler IJ. Congenital hypomyelinating neuropathy. J Neurol Neurosurg Psychiatry 1985; 48:1269–1276.PubMedCrossRefGoogle Scholar
  57. 57.
    Baloh RH, Strickland A, Ryu E et al. Congenital hypomyelinating neuropathy with lethal conduction failure in mice carrying the Egr2 I268N mutation. J Neurosci 2009; 29:2312–2321.PubMedCrossRefGoogle Scholar
  58. 58.
    Barankova L, Siskova D, Huhne K et al. A 71-nucleotide deletion in the periaxin gene in a Romani patient with early-onset slowly progressive demyelinating CMT. Eur J Neurol 2008; 15:548–551.PubMedCrossRefGoogle Scholar
  59. 59.
    Dytrych L, Sherman DL, Gillespie CS et al. Two PDZ domain proteins encoded by the murine periaxin gene are the result of alternative intron retention and are differentially targeted in Schwann cells. J Biol Chem 1998; 273:5794–5800.PubMedCrossRefGoogle Scholar
  60. 60.
    Sherman DL, Brophy PJ. A tripartite nuclear localization signal in the PDZ-domain protein L-periaxin. J Biol Chem 2000; 275:4537–4540.PubMedCrossRefGoogle Scholar
  61. 61.
    Sherman DL, Fabrizi C, Gillespie CS et al. Specific disruption of a schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron 2001; 30:677–687.PubMedCrossRefGoogle Scholar
  62. 62.
    Boerkoel CF, Takashima H, Stankiewicz P et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet 2001; 68:325–333.PubMedCrossRefGoogle Scholar
  63. 63.
    Gillespie CS, Sherman DL, Fleetwood-Walker SM et al. Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 2000; 26:523–531.PubMedCrossRefGoogle Scholar
  64. 64.
    Kijima K, Numakura C, Shirahata E et al. Periaxin mutation causes early-onset but slow-progressive Charcot-Marie-Tooth disease. J Hum Genet 2004; 49:376–379.PubMedCrossRefGoogle Scholar
  65. 65.
    Guilbot A, Williams A, Ravise N et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum Mol Genet 2001; 10:415–421.PubMedCrossRefGoogle Scholar
  66. 66.
    Kabzinska D, Kochanski A, Drac H et al. A novel Met116Thr mutation in the GDAP1 gene in a Polish family with the axonal recessive Charcot-Marie-Tooth type 4 disease. J Neurol Sci 2006; 241:7–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Stendel C, Roos A, Deconinck T et al. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 2007; 81:158–164.PubMedCrossRefGoogle Scholar
  68. 68.
    Delague V, Jacquier A, Hamadouche T et al. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 2007; 81:1–16.PubMedCrossRefGoogle Scholar
  69. 69.
    Houlden H, Hammans S, Katifi H et al. A novel Frabin (FGD4) nonsense mutation p.R275X associated with phenotypic variability in CMT4H. Neurology 2009; 72:617–620.PubMedCrossRefGoogle Scholar
  70. 70.
    Fabrizi GM, Taioli F, Cavallaro T et al. Further evidence that mutations in FGD4/frabin cause Charcot-Marie-Tooth disease type 4H. Neurology 2009; 72:1160–1164.PubMedCrossRefGoogle Scholar
  71. 71.
    De Sandre-Giovannoli A, Delague V, Hamadouche T et al. Homozygosity mapping of autosomal recessive demyelinating Charcot-Marie-Tooth neuropathy (CMT4H) to a novel locus on chromosome 12p11.21-q13.11. J Med Genet 2005; 42:260–265.PubMedCrossRefGoogle Scholar
  72. 72.
    Chow CY, Zhang Y, Dowling JJ et al. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 2007; 448:68–72.PubMedCrossRefGoogle Scholar
  73. 73.
    Chow CY, Landers JE, Bergren SK et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 2009; 84:85–88.PubMedCrossRefGoogle Scholar
  74. 74.
    Volpicelli-Daley L, De Camilli P. Phosphoinositides’ link to neurodegeneration. Nat Med 2007; 13:784–786.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang X, Chow CY, Sahenk Z et al. Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 2008; 131:1990–2001.PubMedCrossRefGoogle Scholar
  76. 76.
    Rutherford AC, Traer C, Wassmer T et al. The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 2006; 119:3944–3957.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang Y, Zolov SN, Chow CY et al. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci USA 2007; 104:17518–17523.PubMedCrossRefGoogle Scholar
  78. 78.
    Gresham D, Morar B, Underhill PA et al. Origins and divergence of the Roma (gypsies). Am J Hum Genet 2001; 69:1314–1331.PubMedCrossRefGoogle Scholar
  79. 79.
    Morar B, Gresham D, Angelicheva D et al. Mutation history of the roma/gypsies. Am J Hum Genet 2004; 75:596–609.PubMedCrossRefGoogle Scholar
  80. 80.
    Kalaydjieva L, Morar B, Chaix R et al. A newly discovered founder population: the Roma/Gypsies. Bioessays 2005; 27:1084–1094.PubMedCrossRefGoogle Scholar
  81. 81.
    Kalaydjieva L, Lochmuller H, Tournev I et al 125th ENMC International Workshop: Neuromuscular disorders in the Roma (Gypsy) population, 23–25 April 2004, Naarden, The Netherlands. Neuromuscul Disord 2005; 15:65–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Kalaydjieva L, Hallmayer J, Chandler D et al. Gene mapping in Gypsies identifies a novel demyelinating neuropathy on chromosome 8q24. Nat Genet 1996; 14:214–217.PubMedCrossRefGoogle Scholar
  83. 83.
    Kalaydjieva L, Nikolova A, Turnev I et al. Hereditary motor and sensory neuropathy — Lom, a novel demyelinating neuropathy associated with deafness in gypsies. Clinical, electrophysiological and nerve biopsy findings. Brain 1998; 121 (Pt 3):399–408.PubMedCrossRefGoogle Scholar
  84. 84.
    Hantke J, Chandler D, King R et al. A mutation in an alternative untranslated exon of hexokinase 1 associated with hereditary motor and sensory neuropathy — Russe (HMSNR). Eur J Hum Genet 2009; 17:1606–1614.PubMedCrossRefGoogle Scholar
  85. 85.
    Kalaydjieva L, Gresham D, Calafell F. Genetic studies of the Roma (Gypsies): a review. BMC Med Genet 2001; 2:5.PubMedCrossRefGoogle Scholar
  86. 86.
    Hunter M, Bernard R, Freitas E et al. Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth Disease. Hum Mutat 2003; 22:129–135.PubMedCrossRefGoogle Scholar
  87. 87.
    Gooding R, Colomer J, King R et al. A novel Gypsy founder mutation, p.Arg1109X in the CMT4C gene, causes variable peripheral neuropathy phenotypes. J Med Genet 2005; 42:e69.PubMedCrossRefGoogle Scholar
  88. 88.
    Rogers T, Chandler D, Angelicheva D et al. A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am J Hum Genet 2000; 67:664–671.PubMedCrossRefGoogle Scholar
  89. 89.
    Thomas PK, Kalaydjieva L, Youl B et al. Hereditary motor and sensory neuropathy-russe: new autosomal recessive neuropathy in Balkan Gypsies. Ann Neurol 2001; 50:452–457.PubMedCrossRefGoogle Scholar
  90. 90.
    Tournev I, Kalaydjieva L, Youl B et al. Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations. Ann Neurol 1999; 45:742–750.PubMedCrossRefGoogle Scholar
  91. 91.
    Guergueltcheva V, Tournev I, Bojinova V et al. Early clinical and electrophysiologic features of the two most common autosomal recessive forms of Charcot-Marie-Tooth disease in the Roma (Gypsies). J Child Neurol 2006; 21:20–25.PubMedCrossRefGoogle Scholar
  92. 92.
    De Sandre-Giovannoli A, Chaouch M, Kozlov S et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 2002; 70:726–736.PubMedCrossRefGoogle Scholar
  93. 93.
    Worman HJ, Bonne G. “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res 2007; 313:2121–2133.PubMedCrossRefGoogle Scholar
  94. 94.
    Goizet C, Yaou RB, Demay L et al. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease and leuconychia. J Med Genet 2004; 41:e29.PubMedCrossRefGoogle Scholar
  95. 95.
    Benedetti S, Bertini E, Iannaccone S et al. Dominant LMNA mutations can cause combined muscular dystrophy and peripheral neuropathy. J Neurol Neurosurg Psychiatry 2005; 76:1019–1021.PubMedCrossRefGoogle Scholar
  96. 96.
    Bouhouche A, Birouk N, Azzedine H et al. Autosomal recessive axonal Charcot-Marie-Tooth disease (ARCMT2): phenotype-genotype correlations in 13 Moroccan families. Brain 2007; 130:1062–1075.PubMedCrossRefGoogle Scholar
  97. 97.
    Hamadouche T, Poitelon Y, Genin E et al. Founder effect and estimation of the age of the c.892C < T (p.Arg298Cys) mutation in LMNA associated to Charcot-Marie-Tooth subtype CMT2B1 in families from North Western Africa. Ann Hum Genet 2008; 72:590–597.PubMedCrossRefGoogle Scholar
  98. 98.
    Lin F, Worman HJ. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 1993; 268:16321–16326.PubMedGoogle Scholar
  99. 99.
    Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 2006; 7:940–952.PubMedCrossRefGoogle Scholar
  100. 100.
    Tazir M, Azzedine H, Assami S et al. Phenotypic variability in autosomal recessive axonal Charcot-Marie-Tooth disease due to the R298C mutation in lamin A/C. Brain 2004; 127:154–163.PubMedCrossRefGoogle Scholar
  101. 101.
    Leal A, Morera B, Del Valle G et al. A second locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 19q13.3. Am J Hum Genet 2001; 68:269–274.PubMedCrossRefGoogle Scholar
  102. 102.
    Leal A, Huehne K, Bauer F et al. Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models. Neurogenetics. 2009.Google Scholar
  103. 103.
    Mittler G, Stuhler T, Santolin L et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J 2003; 22:6494–6504.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Carmen Espinós
    • 1
    Email author
  • Eduardo Calpena
    • 1
    • 2
  • Dolores Martínez-Rubio
    • 1
    • 2
  • Vincenzo Lupo
    • 1
    • 2
  1. 1.Unit 732Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)ValenciaSpain
  2. 2.Unit of Genetics and Molecular Medicine, Instituto de Biomedicina de Valencia (IBV)CSICValenciaSpain

Personalised recommendations