The Spinocerebellar Ataxias: Clinical Aspects And Molecular Genetics

  • Antoni Matilla-DueñasEmail author
  • Marc Corral-Juan
  • Victor Volpini
  • Ivelisse Sanchez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 724)


Spinocerebellar ataxias (SCAs) are a highly heterogeneous group of inherited neurological disorders, based on clinical characterization alone with variable degrees of cerebellar ataxia often accompanied by additional cerebellar and noncerebellar symptoms which in most cases defy differentiation. Molecular causative deficits in at least 31 genes underlie the clinical symptoms in the SCAs by triggering cerebellar and, very frequently, brain stem dysfunction. The identification of the causative molecular deficits enables the molecular diagnosis of the different SCA subtypes and facilitates genetic counselling. Recent scientific advances are shedding light into developing therapeutic strategies. The scope of this chapter is to provide updated details of the spinocerebellar ataxias with particular emphasis on those aspects aimed at facilitating the clinical and genetic diagnoses.


Neurodegenerative Disease Spinocerebellar Ataxia Normal Allele Spinocerebellar Ataxia Type Spanish National Health System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zoghbi HY, Orr HT. Spinocerebellar ataxias. In: Scriver CR, Sly WS, Childs AL et al, eds. The Metabolic and Molecular Basis of Inherited Disease. New York: MaGraw Professionals, 2001:5741–5758.Google Scholar
  2. 2.
    Matilla-Dueñas A, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain 2006; 129:1357–1370.CrossRefGoogle Scholar
  3. 3.
    Soong BW, Paulson HL. Spinocerebellar ataxias: an update. Curr Opin Neurol 2007; 20(4):438–446.PubMedCrossRefGoogle Scholar
  4. 4.
    Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol 2009; 22(4):419–429.PubMedCrossRefGoogle Scholar
  5. 5.
    Matilla-Dueñas A, Sanchez I, Corral-Juan M et al. Cellular and Molecular Pathways Triggering Neurodegeneration in the Spinocerebellar Ataxias. Cerebellum 2010; 9(2):148–166.PubMedCrossRefGoogle Scholar
  6. 6.
    McKusick V. Online Mendelian Inheritance in Man, OMIM (TM): McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), Scholar
  7. 7.
    Pagon RA, Bird TC, Dolan CR et al. Gene Reviews [Internet]. Seattle: University of Washington, Seattle, 1993-2010.Google Scholar
  8. 8.
    Schmitz-Hubsch T, du Montcel ST, Baliko L et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006; 66(11):1717–1720.PubMedCrossRefGoogle Scholar
  9. 9.
    Schmitz-Hubsch T, Coudert M, Bauer P et al. Spinocerebellar ataxia types 1, 2, 3 and 6: disease severity and nonataxia symptoms. Neurology 2008; 71(13):982–989.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmitz-Hubsch T, Fimmers R, Rakowicz M et al. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 2010; 74(8):678–684.PubMedCrossRefGoogle Scholar
  11. 11.
    Sequeiros J, Martindale J, Seneca S. EMQN Best Practice Guidelines for molecular genetic testing of SCAs. Eur J Hum Genet 2010; 18(11):1173–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Sequeiros J, Seneca S, Martindale J. Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur J Hum Genet 2010; 18(11):1188–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Matilla-Dueñas A, Goold R, Giunti P. Clinical, genetic, molecular and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum 2008; 7(2):106–114.PubMedCrossRefGoogle Scholar
  14. 14.
    Genis D, Matilla T, Volpini V et al. Clinical, neuropathologic and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 1995; 45(1):24–30.PubMedGoogle Scholar
  15. 15.
    Matilla T, Volpini V, Genis D et al. Presymptomatic analysis of spinocerebellar ataxia type 1(SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum Mol Genet 1993; 2(12):2123–2128.PubMedCrossRefGoogle Scholar
  16. 16.
    Jodice C, Malaspina P, Persichetti F et al. Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia 1. Am J Hum Genet 1994; 54:959–965.PubMedGoogle Scholar
  17. 17.
    Ranum LPW, Chung M-y, Banfi S et al. Molecular and clinical correlations in spinocerebellar ataxia type 1 (SCA1): evidence for familial effects on the age of onset. Am J Hum Genet 1994; 55:244–252.PubMedGoogle Scholar
  18. 18.
    Orr HT, Zoghbi HY. SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum Mol Genet 2001; 10(20):2307–2311.PubMedCrossRefGoogle Scholar
  19. 19.
    Goldfarb LG, Vasconcelos O, Platonov FA et al. Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol 1996; 39(4):500–506.PubMedCrossRefGoogle Scholar
  20. 20.
    Zuhlke C, Dalski A, Hellenbroich Y et al. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet 2002; 10(3):204–209.PubMedCrossRefGoogle Scholar
  21. 21.
    Pulst SM. Spinocerebellar ataxia type 2 In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2006.Google Scholar
  22. 22.
    Lastres-Becker I, Rub U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum 2008; 7(2):115–124.PubMedCrossRefGoogle Scholar
  23. 23.
    Orozco G, Estrada R, Perry TL et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological and biochemical findings. J Neurol Sci 1989; 93:37–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Velazquez-Perez L, Seifried C, Santos-Falcon N et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol 2004; 56(3):444–447.PubMedCrossRefGoogle Scholar
  25. 25.
    Armstrong J, Bonaventura I, Rojo A et al. Spinocerebellar ataxia type 2 (SCA2) with white matter involvement. Neurosci Lett 2005; 381(3):247–251.PubMedCrossRefGoogle Scholar
  26. 26.
    Filla A, De Michele G, Banfi S et al. Has spinocerebellar ataxia type 2 a distinct phenotype? Genetic and clinical study of an Italian family. Neurology 1995; 45(4):793–796.PubMedGoogle Scholar
  27. 27.
    Flanigan K, Gardner K, Alderson K et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996; 59(2):392–399.PubMedGoogle Scholar
  28. 28.
    Hellenbroich Y, Bubel S, Pawlack H et al. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol 2003; 250(6):668–671.PubMedCrossRefGoogle Scholar
  29. 29.
    Hellenbroich Y, Gierga K, Reusche E et al. Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neur Trans 2006; 113(7):829–843.CrossRefGoogle Scholar
  30. 30.
    Ranum LPW, Schut LJ, Lundgren JK et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 1994; 8:280–284.PubMedCrossRefGoogle Scholar
  31. 31.
    Ikeda Y, Dick KA, Weatherspoon MR et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006; 38(2):184–190.PubMedCrossRefGoogle Scholar
  32. 32.
    Gomez CM. Spinocerebellar ataxia type 6. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2008.Google Scholar
  33. 33.
    Yabe I, Sasaki H, Takeichi N et al. Positional vertigo and macroscopic downbeat positioning nystagmus in spinocerebellar ataxia type 6 (SCA6). J Neurol 2003; 250(4):440–443.PubMedCrossRefGoogle Scholar
  34. 34.
    Hashimoto T, Sasaki O, Yoshida K et al. Periodic alternating nystagmus and rebound nystagmus in spinocerebellar ataxia type 6. Mov Disord 2003; 18(10):1201–1204.PubMedCrossRefGoogle Scholar
  35. 35.
    Globas C, Bosch S, Zuhlke C et al. The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol 2003; 250(12):1482–1487.PubMedCrossRefGoogle Scholar
  36. 36.
    Gomez CM, Thompson RM, Gammack JT et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration and variable age of onset. Ann Neurol 1997; 42(6):933–950.PubMedCrossRefGoogle Scholar
  37. 37.
    Sasaki H, Kojima H, Yabe I et al. Neuropathological and molecular studies of spinocerebellar ataxia type 6 (SCA6). Acta Neuropathol 1998; 95(2):199–204.PubMedCrossRefGoogle Scholar
  38. 38.
    Ying SH, Choi SI, Lee M et al. Relative atrophy of the flocculus and ocular motor dysfunction in SCA2 and SCA6. Ann N Y Acad Sci 2005; 1039:430–435.PubMedCrossRefGoogle Scholar
  39. 39.
    Khan NL, Giunti P, Sweeney MG et al. Parkinsonism and nigrostriatal dysfunction are associated with spinocerebellar ataxia type 6 (SCA6). Mov Disord 2005; 20(9):1115–1119.PubMedCrossRefGoogle Scholar
  40. 40.
    Takahashi H, Ishikawa K, Tsutsumi T et al. A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet 2004; 49(5):256–264.PubMedCrossRefGoogle Scholar
  41. 41.
    Bird TD, Pagon RA, La Spada AR. Spinocerebellar ataxia type 7. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2007.Google Scholar
  42. 42.
    Garden GA, La Spada AR. Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 2008; 7(2):138–149.PubMedCrossRefGoogle Scholar
  43. 43.
    Babovic-Vuksanovic D, Snow K, Patterson MC et al. Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am J Med Genet 1998; 79(5):383–387.PubMedCrossRefGoogle Scholar
  44. 44.
    Benton CS, de Silva R, Rutledge SL et al. Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 1998; 51(4):1081–1086.PubMedGoogle Scholar
  45. 45.
    Ansorge O, Giunti P, Michalik A et al. Ataxin-7 aggregation and ubiquitination in infantile SCA7 with 180 CAG repeats. Ann Neurol 2004; 56(3):448–452.PubMedCrossRefGoogle Scholar
  46. 46.
    Mittal U, Roy S, Jain S et al. Post-zygotic de novo trinucleotide repeat expansion at spinocerebellar ataxia type 7 locus: evidence from an Indian family. J Hum Genet 2005; 50(3):155–157.PubMedCrossRefGoogle Scholar
  47. 47.
    Ikeda S, Dalton JC, Day JW et al. Spinocerebellar ataxia type 8. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2007.Google Scholar
  48. 48.
    Ikeda Y, Daughters RS, Ranum LP. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 2008; 7(2):150–158.PubMedCrossRefGoogle Scholar
  49. 49.
    Ikeda Y, Dalton JC, Moseley ML et al. Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. Am J Hum Genet 2004; 75(1):3–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Moseley ML, Schut LJ, Bird TD et al. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 2000; 9(14):2125–2130.PubMedCrossRefGoogle Scholar
  51. 51.
    Worth PF, Houlden H, Giunti P et al. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet 2000; 24(3):214–215.PubMedCrossRefGoogle Scholar
  52. 52.
    Sulek A, Hoffman-Zacharska D, Zdzienicka E et al. SCA8 repeat expansion coexists with SCA1—not only with SCA6. Am J Hum Genet 2003; 73(4):972–974.PubMedCrossRefGoogle Scholar
  53. 53.
    Corral J, Genis D, Banchs I et al. Giant SCA8 alleles in nine children whose mother has two moderately large ones. Ann Neurol 2005; 57(4):549–553.PubMedCrossRefGoogle Scholar
  54. 54.
    Baba Y, Uitti RJ, Farrer MJ et al. Atypical Parkinsonism and SCA8. Parkinsonism Relat Disord 2006; 12(6):396.PubMedCrossRefGoogle Scholar
  55. 55.
    Ohnari K, Aoki M, Uozumi T et al. Severe symptoms of 16q-ADCA coexisting with SCA8 repeat expansion. J Neurol Sci 2008; 273(1-2):15–18.PubMedCrossRefGoogle Scholar
  56. 56.
    Munhoz RP, Teive HA, Raskin S et al. CTA/CTG expansions at the SCA 8 locus in multiple system atrophy. Clin Neurol Neurosurg 2009; 111(2):208–210.PubMedCrossRefGoogle Scholar
  57. 57.
    Matsuura T, Yamagata T, Burgess DL et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26(2):191–194.PubMedCrossRefGoogle Scholar
  58. 58.
    Lin X, Ashizawa T. Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum 2005; 4(1):37–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Johnson J, Wood N, Giunti P et al. Clinical and genetic analysis of spinocerebellar ataxia type 11. Cerebellum 2008; 7(2):159–164.PubMedCrossRefGoogle Scholar
  60. 60.
    Worth PF, Giunti P, Gardner-Thorpe C et al. Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 1999; 65(2):420–426.PubMedCrossRefGoogle Scholar
  61. 61.
    Houlden H, Johnson J, Gardner-Thorpe C et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet 2007; 39(12):1434–1436.PubMedCrossRefGoogle Scholar
  62. 62.
    Margolis RL, O'hearn E, Holmes SE et al. Spinocerebellar ataxia type 12. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2007.Google Scholar
  63. 63.
    O'Hearn E, Holmes SE, Calvert PC et al. SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 2001; 56(3):299–303.PubMedGoogle Scholar
  64. 64.
    Srivastava AK, Choudhry S, Gopinath MS et al. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol 2001; 50(6):796–800.PubMedCrossRefGoogle Scholar
  65. 65.
    Brussino A, Graziano C, Giobbe D et al. Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia. Mov Disord 2010; 25(9):1269–1273.PubMedCrossRefGoogle Scholar
  66. 66.
    Fujigasaki H, Martin JJ, De Deyn PP et al. CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 2001; 124(10):1939–1947.PubMedCrossRefGoogle Scholar
  67. 67.
    Hellenbroich Y, Schulz-Schaeffer W, Nitschke MF et al. Coincidence of a large SCA12 repeat allele with a case of Creutzfeld-Jacob disease. J Neurol Neurosurg Psychiatry 2004; 75(6):937–938.PubMedCrossRefGoogle Scholar
  68. 68.
    Fujigasaki H, Verma IC, Camuzat A et al. SCA12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol 2001; 49(1):117–121.PubMedCrossRefGoogle Scholar
  69. 69.
    Holmes S, O'Hearn E, Brachmachari S et al. SCA12. In: Pulst S, ed. Genetics of Movement Disorders. San Diego: Academic Press, 2002.Google Scholar
  70. 70.
    Waters MF, Pulst SM. Sca13. Cerebellum 2008; 7(2):165–169.PubMedCrossRefGoogle Scholar
  71. 71.
    Waters MF, Minassian NA, Stevanin G et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 2006; 38(4):447–451.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen D-H, Bird TD, Raskind WH. Spinocerebellar ataxia type 14. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2010.Google Scholar
  73. 73.
    Chen DH, Brkanac Z, Verlinde CL et al. Missense Mutations in the Regulatory Domain of PKCgamma: A New Mechanism for Dominant Nonepisodic Cerebellar Ataxia. Am J Hum Genet 2003; 72(4):839–849.PubMedCrossRefGoogle Scholar
  74. 74.
    Storey E. Spinocerebellar ataxia type 15. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2009.Google Scholar
  75. 75.
    Di Gregorio E, Orsi L, Godani M et al. Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum; 9(1):115–123.Google Scholar
  76. 76.
    Toyoshima Y, Onodera O, Yamada M et al. Spinocerebellar ataxia type 17. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2007.Google Scholar
  77. 77.
    Koide R, Kobayashi S, Shimohata T et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 1999; 8(11):2047–2053.PubMedCrossRefGoogle Scholar
  78. 78.
    Nakamura K, Jeong SY, Uchihara T et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001; 10(14):1441–1448.PubMedCrossRefGoogle Scholar
  79. 79.
    Maltecca F, Filla A, Castaldo I et al. Intergenerational instability and marked anticipation in SCA-17. Neurology 2003; 61(10):1441–1443.PubMedGoogle Scholar
  80. 80.
    Zuhlke CH, Spranger M, Spranger S et al. SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet 2003; 11(8):629–632.PubMedCrossRefGoogle Scholar
  81. 81.
    Zuhlke C, Dalski A, Schwinger E et al. Spinocerebellar ataxia type 17: report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med Genet 2005; 6:27.PubMedCrossRefGoogle Scholar
  82. 82.
    Gamez J, Sierra-Marcos A, Gratacos M et al. Camptocormia associated with an expanded allele in the TATA box-binding protein gene. Mov Disord 2010; 25(9):1293–1295.PubMedCrossRefGoogle Scholar
  83. 83.
    Brkanac Z, Bylenok L, Fernandez M et al. A new dominant spinocerebellar ataxia linked to chromosome 19q13.4-qter. Arch Neurol 2002; 59(8):1291–1295.PubMedCrossRefGoogle Scholar
  84. 84.
    Brkanac Z, Spencer D, Shendure J et al. IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. Am J Hum Genet 2009; 84(5):692–697.PubMedCrossRefGoogle Scholar
  85. 85.
    Schelhaas HJ, Ippel PF, Hageman G et al. Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J Neurol 2001; 248(2):113–120.PubMedCrossRefGoogle Scholar
  86. 86.
    Chung MY, Lu YC, Cheng NC et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 2003; 126(Pt 6):1293–1299.PubMedCrossRefGoogle Scholar
  87. 87.
    Storey E, Knight MA, Forrest SM et al. Spinocerebellar ataxia type 20. Cerebellum 2005; 4(1):55–57.PubMedCrossRefGoogle Scholar
  88. 88.
    Storey E. Spinocerebellar ataxia type 20. In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle: University of Washington, Seattle, 2009.Google Scholar
  89. 89.
    Knight MA, Gardner RJ, Bahlo M et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 2004; 127(Pt 5):1172–1181.PubMedCrossRefGoogle Scholar
  90. 90.
    Coutinho P, Cruz VT, Tuna A et al. Cerebellar ataxia with spasmodic cough: a new form of dominant ataxia. Arch Neurol 2006; 63 (4):553–555.PubMedCrossRefGoogle Scholar
  91. 91.
    K night MA, Hernandez D, Diede SJ et al. A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum Mol Genet 2008; 17(24):3847–3853.PubMedCrossRefGoogle Scholar
  92. 92.
    Devos D, Schraen-Maschke S, Vuillaume I et al. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 2001; 56(2):234–238.PubMedGoogle Scholar
  93. 93.
    Delplanque J, Devos D, Vuillaume I et al. Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). Cerebellum 2008; 7(2):179–183.PubMedCrossRefGoogle Scholar
  94. 94.
    Vuillaume I, Devos D, Schraen-Maschke S et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol 2002; 52(5):666–670.PubMedCrossRefGoogle Scholar
  95. 95.
    Verbeek DS, van de Warrenburg BP, Wesseling P et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain 2004; 127(Pt 11):2551–2557.PubMedCrossRefGoogle Scholar
  96. 96.
    Verbeek DS. Spinocerebellar ataxia type 23: a genetic update. Cerebellum 2009; 8(2):104–107.PubMedCrossRefGoogle Scholar
  97. 97.
    Stevanin G, Broussolle E, Streichenberger N et al. Spinocerebellar ataxia with sensory neuropathy (SCA25). Cerebellum 2005; 4(1):58–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Yu GY, Howell MJ, Roller MJ et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 2005; 57(3):349–354.PubMedCrossRefGoogle Scholar
  99. 99.
    van Swieten JC, Brusse E, de Graaf BM et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ataxia. Am J Hum Genet 2003; 72(1):191–199.CrossRefGoogle Scholar
  100. 100.
    Brusse E, de Koning I, Maat-Kievit A et al. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord 2006; 21(3):396–401.PubMedCrossRefGoogle Scholar
  101. 101.
    Dalski A, Atici J, Kreuz FR et al. Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet 2005; 13(1):118–120.PubMedCrossRefGoogle Scholar
  102. 102.
    Misceo D, Fannemel M, Baroy T et al. SCA27 caused by a chromosome translocation: further delineation of the phenotype. Neurogenetics 2009; 10(4):371–374.PubMedCrossRefGoogle Scholar
  103. 103.
    Mariotti C, Brusco A, Di Bella D et al. Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum 2008; 7(2):184–188.PubMedCrossRefGoogle Scholar
  104. 104.
    Di Bella D, Lazzaro F, Brusco A et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 2010; 42(4):313–321.PubMedCrossRefGoogle Scholar
  105. 105.
    Edener U, Wollner J, Hehr U et al. Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation. Eur J Hum Genet 2010; 18(8):965–968.PubMedCrossRefGoogle Scholar
  106. 106.
    Furman JM, Baloh RW, Chugani H et al. Infantile cerebellar atrophy. Ann Neurol 1985; 17(4):399–402.PubMedCrossRefGoogle Scholar
  107. 107.
    Tomiwa K, Baraitser M, Wilson J. Dominantly inherited congenital cerebellar ataxia with atrophy of the vermis. Pediatr Neurol 1987; 3(6):360–362.PubMedCrossRefGoogle Scholar
  108. 108.
    Jen JC, Lee H, Cha YH et al. Genetic heterogeneity of autosomal dominant nonprogressive congenital ataxia. Neurology 2006; 67(9):1704–1706.PubMedCrossRefGoogle Scholar
  109. 109.
    Dudding TE, Friend K, Schofield PW et al. Autosomal dominant congenital nonprogressive ataxia overlaps with the SCA15 locus. Neurology 2004; 63(12):2288–2292.PubMedGoogle Scholar
  110. 110.
    Storey E, Bahlo M, Fahey M et al. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 2009; 80(4):408–411.PubMedCrossRefGoogle Scholar
  111. 111.
    Nagaoka U, Takashima M, Ishikawa K et al. A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 2000; 54(10):1971–1975.PubMedGoogle Scholar
  112. 112.
    Owada K, Ishikawa K, Toru S et al. A clinical, genetic and neuropathologic study in a family with 16q-linked ADCA type III. Neurology 2005; 65(4):629–632.PubMedCrossRefGoogle Scholar
  113. 113.
    Ishikawa K, Toru S, Tsunemi T et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5' untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet 2005; 77(2):280–296.PubMedCrossRefGoogle Scholar
  114. 114.
    Ouyang Y, Sakoe K, Shimazaki H et al 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci 2006; 247(2):180–186.PubMedCrossRefGoogle Scholar
  115. 115.
    Hirano R, Takashima H, Okubo R et al. Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in South Kyushu, Japan. J Hum Genet 2009; 54(7):377–381.CrossRefGoogle Scholar
  116. 116.
    Sato N, Amino T, Kobayashi K et al. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 2009; 85(5):544–557.PubMedCrossRefGoogle Scholar
  117. 117.
    Hirayama K, Takayanagi T, Nakamura R et al. Spinocerebellar degenerations in Japan: a nationwide epidemiological and clinical study. Acta Neurol Scand Suppl 1994; 153:1–22.CrossRefGoogle Scholar
  118. 118.
    Goizet C, Lesca G, Durr A. Presymptomatic testing in Huntington’s disease and autosomal dominant cerebellar ataxias. Neurology 2002; 59(9):1330–1336.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Antoni Matilla-Dueñas
    • 1
    Email author
  • Marc Corral-Juan
    • 1
  • Victor Volpini
    • 2
  • Ivelisse Sanchez
    • 1
  1. 1.Basic, Translational and Neurogenetics Research Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias i Pujol (IGTP)Universitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Molecular Diagnosis Center of Inherited Diseases, Institut d’Investigacions Biomèdiques de Bellvitge (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain

Personalised recommendations