Oxidative Stress in Developmental Brain Disorders

  • Masaharu HayashiEmail author
  • Rie Miyata
  • Naoyuki Tanuma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 724)


In order to examine the involvement of oxidative stress in developmental brain disorders, we have performed immunohistochemistry in autopsy brains and enzyme-linked immunosorbent assay (ELISA) in the cerebrospinal fluid and urines of patients. Here, we review our data on the hereditary DNA repair disorders, congenital metabolic errors and childhood-onset neurodegenerative disorders. First, in our studies on hereditary DNA repair disorders, increased oxidative DNA damage and lipid peroxidation were carried out in the degeneration of basal ganglia, intracerebral calcification and cerebellar degeneration in patients with xeroderma pigmentosum, Cockayne syndrome and ataxia-telangiectasia-like disorder, respectively. Next, congenital metabolic errors, apoptosis due to lipid peroxidation seemed to cause neuronal damage in neuronal ceroid-lipofuscinosis. Oxidative stress of DNA combined with reduced expression of antioxidant enzymes occurred in the lesion of the cerebral cortex in mucopolysaccharidoses and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. In childhood-onset neurodegenerative disorders, increased oxidative DNA damage and lipid peroxidation may lead to motor neuron death in spinal muscular atrophy like in amyotrophic lateral sclerosis. In patients with dentatorubral-pallidoluysian atrophy, a triplet repeat disease, deposition of oxidative products of nucleosides and reduced expression of antioxidant enzymes were found in the lenticular nucleus. In contrast, the involvement of oxidative stress is not definite in patients with Lafora disease. Rett syndrome patients showed changes of oxidative stress markers and antioxidant power in urines, although the changes may be related to systemic complications.


Amyotrophic Lateral Sclerosis Spinal Muscular Atrophy Rett Syndrome Survival Motor Neuron Xeroderma Pigmentosum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayashi M. Oxidative stress in developmental brain disorders. Neuropathology 2009; 29(1):1–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 2004; 44(4):275–295.PubMedCrossRefGoogle Scholar
  3. 3.
    Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathology Int 1999; 49(2):91–102.CrossRefGoogle Scholar
  4. 4.
    Iwai S. Synthesis and thermodynamic studies of oligonucleotides containing the two isomers of thymidine glycol. Chemistry 2001; 7(20):4343–4351.PubMedCrossRefGoogle Scholar
  5. 5.
    Hayashi M, Tanuma N, Miyata R. The involvement of oxidative stress in epilepsy. In: Kozyrev D, Slutsky V, eds. Handbook of Free Radicals: formation, types and effects. New York: Nova Science Publishers, 2010:305–318.Google Scholar
  6. 6.
    Takeuchi M, Yamagishi S. Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and Alzheimer’s disease. J Alzheimers Dis 2009; 16(4):845–858.PubMedGoogle Scholar
  7. 7.
    Shiihara T, Kato M, Ichiyama T et al. Acute encephalopathy with refractory status epilepticus: bilateral mesial temporal and claustral lesions, associated with a peripheral marker of oxidative DNA damage. J Neurol Sci 2006; 250(1–2):159–161.PubMedCrossRefGoogle Scholar
  8. 8.
    Tanuma N, Miyata R, Hayashi M et al. Oxidative stress as a biomarker of respiratory disturbance in patients with severe motor and intellectual disabilities. Brain Dev 2008; 30(6):402–409.PubMedCrossRefGoogle Scholar
  9. 9.
    Tanuma N, Miyata R, Kumada S et al. The axonal damage marker tau protein in the cerebrospinal fluid is increased in patients with acute encephalopathy with biphasic seizures and late reduced diffusion. Brain Dev 2010; 32(6):435–439.PubMedCrossRefGoogle Scholar
  10. 10.
    Izuta H, Matsunaga N, Shimazawa M et al. Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress and VEGF in vitreous body. Mol Vis 2010; 16:130–136.PubMedGoogle Scholar
  11. 11.
    Hayashi M, Arai N, Satoh J et al. Neurodegenerative mechanisms in subacute sclerosing panencephalitis. J Child Neurol 2002; 17(10):725–730.PubMedCrossRefGoogle Scholar
  12. 12.
    Martin LJ. DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol 2008; 67(5):377–387.PubMedCrossRefGoogle Scholar
  13. 13.
    Kraemer KH, Patronas NJ, Schiffmann R et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a comple genotype-phenotype relationship. Neuroscience 2007; 145(4):1388–1396.PubMedCrossRefGoogle Scholar
  14. 14.
    Hayashi M. Role of oxidative stress in xeroderma pigmentosum. Adv Exp Med Biol 2008; 637:120–127.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayashi M, Hayakawa K, Suzuki F et al. A neuropathological study of early onset Cockayne syndrome with chromosomal anomaly 47XXX. Brain Dev 1992; 14(1):63–67.PubMedGoogle Scholar
  16. 16.
    Hayashi M, Itoh M, Araki S et al. Oxidative stress and disturbed glutamate transport in hereditary nucleotide repair disorders. J Neuropathol Exp Neurol 2001; 60(4):350–356.PubMedGoogle Scholar
  17. 17.
    Saito Y, Shibuya M, Hayashi M et al. Cerebellopontine calcification: a new entitiy of idiopathic intracranial calcification Acta Neuropathol 2005; 110(1):77–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Mody N, Parhami F, Sarafian TA et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001; 31(4):509–519.PubMedCrossRefGoogle Scholar
  19. 19.
    Massy ZA, Maziere C, Kamel S et al. Impact of inflammation and oxidative stress on vascular calcifications in chronic kidney disease. Pediatr Nephrol 2005; 20(3):380–382.PubMedCrossRefGoogle Scholar
  20. 20.
    Hayashi M, Araki S, Kohyama J et al. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome. Brain Dev 2005; 27(1):34–38.PubMedCrossRefGoogle Scholar
  21. 21.
    Ahmad SI (edt). Molecular Mechanisms of Ataxia telangiectasia, Landes Bioscience Publication, 2006.Google Scholar
  22. 22.
    Takao N, Li Y, Yamamoto K. Protective roles for ATM in cellular response to oxidative stress. FEBS Lett 2000; 472(1):133–136.PubMedCrossRefGoogle Scholar
  23. 23.
    Stern N, Hochman A, Zemach N et al. Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice. J Biol Chem 2002; 277(1):602–608.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen P, Peng C, Luff J et al. Oxidative stress is responsible for deficient survival and dendritogenesis in Purkinje neurons from ataxiatelangiectasia mutated mice. J Neurosci 2003; 23(36):11453–11460.PubMedGoogle Scholar
  25. 25.
    Russo I, Cosentino C, Del Giudice E et al. In ataxia-teleangiectasia betamethasone response is inversely correlated to cerebellar atrophy and directly to antioxidative capacity. Eur J Neurol 2009; 16(6):755–759.PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair 2004; 3(8-9):1219–1225.PubMedCrossRefGoogle Scholar
  27. 27.
    Iijima K, Ohara M, Seki R et al. Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/ NBS1 complex in cellular responses to DNA damage. J Radiat Res 2008; 49(5):451–464.PubMedCrossRefGoogle Scholar
  28. 28.
    Oba D, Hayashi M, Minamitani M et al. Autopsic study of cerebellar degeneration in siblings with ataxia-telangiectasia-like disorder (ATLD). Acta Neuropathol 2010; 119(4):513–520.PubMedCrossRefGoogle Scholar
  29. 29.
    Kohlschutter A, Schulz A. Towards understanding the neuronal ceroid lipofuscinoses. Brain Dev 2009; 31(7):499–502.PubMedCrossRefGoogle Scholar
  30. 30.
    Hachiya Y, Hayashi M, Kumada S et al. Mechanisms of neurodegeneration in neuronal ceroid-lipofuscinosis. Acta Neuropathol 2006; 111(2):168–177.PubMedCrossRefGoogle Scholar
  31. 31.
    Anzai Y, Hayashi M, Fueki N et al. Protracted juvenile neuronal ceroid lipofuscinosis—an autopsy report and immunohistochemical analysis. Brain Dev 2006; 28(6):462–465.PubMedCrossRefGoogle Scholar
  32. 32.
    Bunge S, Knigge A, Steglich C et al. Mucopolysaccharidosis type IIIB (Sanfilippo B): identification of 18 novel alpha-N-acetylglucosaminidase gene mutations. J Med Genet 1999; 36(1):28–31.PubMedGoogle Scholar
  33. 33.
    Villani GR, Gargiulo N, Faraonio R et al. Cytokines, neurotrophins and oxidative stress in brain disease from mucopolysaccharidosis IIIB. J Neurosci 2007; 85(3):612–622.CrossRefGoogle Scholar
  34. 34.
    Ohmi K, Greenberg DS, Rajavel KS et al. Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA 2003; 100(4):1902–1907.PubMedCrossRefGoogle Scholar
  35. 35.
    Wraith JE, Scarpa M, Beck M et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr 2008; 167(3):267–277.PubMedCrossRefGoogle Scholar
  36. 36.
    Matalon R, Kaul R, Michals K. Mucopolysaccharidosis and mucolipidosis. In: Duckett S, ed. Pediatric Neuropathology. Baltimore: Williams and Wilkins, 1995:525–544.Google Scholar
  37. 37.
    Hamano K, Hayashi M, Shioda K et al. Mechanisms of neurodegeneration in mucopolysaccharidoses II and IIIB: analysis of human brain tissue. Acta Neuropathol 2008; 115(5):547–559.PubMedCrossRefGoogle Scholar
  38. 38.
    Iizuka T, Sakai F. Pathogenesis of stroke-like episodes in MELAS: analysis of neurovascular cellular mechanisms. Curr Neurovasc Res 2005; 2(1):29–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Koga Y, Povalko N, Nishioka J et al. MELAS and l-arginine therapy: pathophysiology of stroke-like episodes. Ann NY Acad Sci 2010; 1201:104–110.PubMedCrossRefGoogle Scholar
  40. 40.
    Trushima E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 2007; 145(4):1233–1248.CrossRefGoogle Scholar
  41. 41.
    Katayama Y, Maeda K, Iizuka T et al. Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 2009; 9(5):306–313.PubMedCrossRefGoogle Scholar
  42. 42.
    Mizuguchi M, Hayashi M, Nakano I et al. Concentric structure of thalamic lesions in acute necrotizing encephalopathy. Neuroradiology 2002; 44(6):489–493.PubMedCrossRefGoogle Scholar
  43. 43.
    Halliwell B. Oxidative stress and neurodegeneration: where are we now-J Neurochem 2006; 97(6):1634–1658.PubMedCrossRefGoogle Scholar
  44. 44.
    Wirth B, Brichta L, Hahnen E. Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol 2006; 13(2):121–131.PubMedCrossRefGoogle Scholar
  45. 45.
    Hayashi M, Araki S, Arai N et al. Oxidative stress and disturbed glutamate transport in spinal muscular atrophy. Brain Dev 2002; 24(8):770–775.PubMedCrossRefGoogle Scholar
  46. 46.
    Araki S, Hayashi M, Tamagawa K et al. Neuropathological analysis in spinal muscular atrophy type II. Acta Neuropathol 2003; 106(5):441–448.PubMedCrossRefGoogle Scholar
  47. 47.
    Hayashi M, Kumada S, Shioda K et al. Neuropathological analysis of the brainstem and cerebral cortex lesions on epileptogenesis in hereditary dentatorubral-pallidoluysian atrophy. Brain Dev 2007; 29(9):473–481.PubMedCrossRefGoogle Scholar
  48. 48.
    Yamada M. CAG repeat disorder models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115(1):71–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Miyata R, Hayashi M, Tanuma N et al. Oxidative stress in neurodegeneration in dentatorubral-pallidoluysian atrophy. J Neurol Sci 2008; 264(1–2):133–139.PubMedCrossRefGoogle Scholar
  50. 50.
    Puranam KL, Wu G, Strittmatter WJ et al. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria. Biochem Biophys Res Commun 2006; 341(2):607–613.PubMedCrossRefGoogle Scholar
  51. 51.
    Ganesh S, Puri R, Singh S et al. Recent advances in the molecular basis of Lafora’s progressive myoclonus epilepsy. J Hum Genet 2006; 51(1):1–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Singh S, Suzuki T, Uchiyama A et al. Mutations in the NHLRC1 gene are the common cause for Lafora disease in the Japanese population. J Hum Genet 2005; 50(7):347–352.PubMedCrossRefGoogle Scholar
  53. 53.
    Gonzales ML, LaSalle JM. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 2010; 12(2):127–134.PubMedCrossRefGoogle Scholar
  54. 54.
    Armstrong DD. Neuropathology of Rett syndrome. J Child Neurol 2005; 20(9):747–753.PubMedCrossRefGoogle Scholar
  55. 55.
    Pardo CA, Eberhart CG. The neurobiology of autism. Brain Pathol 2007; 17(4):434–447.PubMedCrossRefGoogle Scholar
  56. 56.
    Sierra C, Vilaseca MA, Brandi N et al. Oxidative stress in Rett syndrome. Brain Dev 2001; 23(Suppl 1):S236–S239.PubMedCrossRefGoogle Scholar
  57. 57.
    De Felice C, Ciccoli L, Leoncini S et al. Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med 2009; 47(4):440–448.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of Clinical NeuropathologyTokyo Metropolitan Institute for NeuroscienceTokyoJapan

Personalised recommendations