Machado-Joseph Disease and other Rare Spinocerebellar Ataxias

  • Antoni Matilla-Dueñas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 724)


The spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases characterised by progressive lack of motor coordination leading to major disability. SCAs show high clinical, genetic, molecular and epidemiological variability. In the last one decade, the intensive scientific research devoted to the SCAs is resulting in clear advances and a better understanding on the genetic and nongenetic factors contributing to their pathogenesis which are facilitating the diagnosis, prognosis and development of new therapies. The scope of this chapter is to provide an updated information on Machado-Joseph disease (MJD), the most frequent SCA subtype worldwide and other rare spinocerebellar ataxias including dentatorubral-pallidoluysian atrophy (DRPLA), the X-linked fragile X tremor and ataxia syndrome (FXTAS) and the nonprogressive episodic forms of inherited ataxias (EAs). Furthermore, the different therapeutic strategies that are currently being investigated to treat the ataxia and non-ataxia symptoms in SCAs are also described.


Neurodegenerative Disease Spinocerebellar Ataxia FMR1 Gene Episodic Ataxia Episodic Ataxia Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matilla-Dueñas A, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain 2006; 129:1357–1370.CrossRefGoogle Scholar
  2. 2.
    Matilla-Dueñas A, Sanchez I, Corral-Juan M et al. Cellular and Molecular Pathways Triggering Neurodegeneration in the Spinocerebellar Ataxias. Cerebellum 2010; 9(2):148–166.PubMedCrossRefGoogle Scholar
  3. 3.
    Coutinho P, Sequeiros J. Clinical, genetic and pathological aspects of Machado-Joseph disease. J Genet Hum 1981; 29(3):203–209.PubMedGoogle Scholar
  4. 4.
    Matilla T, McCall A, Subramony SH et al. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol 1995; 38(1):68–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Paulson HL. Dominantly inherited ataxias: lessons learned from Machado-Joseph disease/spinocerebellar ataxia type 3. Semin Neurol 2007; 27(2):133–142.PubMedCrossRefGoogle Scholar
  6. 6.
    Riess O, Rub U, Pastore A et al. SCA3: neurological features, pathogenesis and animal models. Cerebellum 2008; 7(2):125–137.PubMedCrossRefGoogle Scholar
  7. 7.
    Isozaki E, Naito R, Kanda T et al. Different mechanism of vocal cord paralysis between spinocerebellar ataxia (SCA 1 and SCA 3) and multiple system atrophy. J Neurol Sci 2002; 197(1–2):37–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Yoshizawa T, Nakamagoe K, Ueno T et al. Early vestibular dysfunction in Machado-Joseph disease detected by caloric test. J Neurol Sci 2004; 221(1–2):109–111.PubMedCrossRefGoogle Scholar
  9. 9.
    Yeh TH, Lu CS, Chou YH et al. Autonomic dysfunction in Machado-Joseph disease. Arch Neurol 2005; 62(4):630–636.PubMedCrossRefGoogle Scholar
  10. 10.
    Friedman JH. Presumed rapid eye movement behavior disorder in Machado-Joseph disease (spinocerebellar ataxia type 3). Mov Disord 2002; 17(6):1350–1353.PubMedCrossRefGoogle Scholar
  11. 11.
    Friedman JH, Fernandez HH, Sudarsky LR. REM behavior disorder and excessive daytime somnolence in Machado-Joseph disease (SCA-3). Mov Disord 2003; 18(12):1520–1522.PubMedCrossRefGoogle Scholar
  12. 12.
    Schols L, Haan J, Riess O et al. Sleep disturbance in spinocerebellar ataxias: is the SCA3 mutation a cause of restless legs syndrome? Neurology 1998; 51(6):1603–1607.PubMedGoogle Scholar
  13. 13.
    van Alfen N, Sinke RJ, Zwarts MJ et al. Intermediate CAG repeat lengths (53,54) for MJD/SCA3 are associated with an abnormal phenotype. Ann Neurol 2001; 49(6):805–807.PubMedCrossRefGoogle Scholar
  14. 14.
    Sequeiros J, Coutinho P. Epidemiology and clinical aspects of Machado-Joseph disease. Adv Neurol 1993; 61:139–153.PubMedGoogle Scholar
  15. 15.
    Rosenberg RN. Machado-Joseph disease: an autosomal dominant motor system degeneration. Mov Disord 1992; 7(3):193–203.PubMedCrossRefGoogle Scholar
  16. 16.
    Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands: a new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology 1978; 28:703–709.PubMedGoogle Scholar
  17. 17.
    Yamada S, Nishimiya J, Nakajima T et al. Linear high intensity area along the medial margin of the internal segment of the globus pallidus in Machado-Joseph disease patients. J Neurol Neurosurg Psychiatry 2005; 76(4):573–575.PubMedCrossRefGoogle Scholar
  18. 18.
    Rub U, De Vos RA, Schultz C et al. Spinocerebellar ataxia type 3 (Machado-Joseph disease): severe destruction of the lateral reticular nucleus. Brain 2002; 125:2115–2124.PubMedCrossRefGoogle Scholar
  19. 19.
    Rub U, Del Turco D, Del Tredici K et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient and its clinical relevance. Brain 2003; 126:2257–2272.PubMedCrossRefGoogle Scholar
  20. 20.
    Rub U, Gierga K, Brunt ER et al. Spinocerebellar ataxias types 2 and 3: degeneration of the precerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm 2005; 112(11):1523–1545.PubMedCrossRefGoogle Scholar
  21. 21.
    Rub U, de Vos RA, Brunt ER et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol 2006; 16(3):218–227.PubMedCrossRefGoogle Scholar
  22. 22.
    Rub U, Seidel K, Ozerden I et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev 2007; 53(2):235–249.PubMedCrossRefGoogle Scholar
  23. 23.
    Rub U, Brunt ER, Gierga K et al. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 2003; 25(2):115–127.PubMedCrossRefGoogle Scholar
  24. 24.
    Tsuji S. Dentatorubral-pallidoluysian atrophy: clinical aspects and molecular genetics. Adv Neurol 2002; 89:231–239.PubMedGoogle Scholar
  25. 25.
    Tsuji S. Dentatorubral-pallidoluysian atrophy In: Pagon R, Bird T, Dolan C et al, eds. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle, 2010.Google Scholar
  26. 26.
    Koide R, Onodera O, Ikeuchi T et al. Atrophy of the cerebellum and brainstem in dentatorubral pallidoluysian atrophy. Influence of CAG repeat size on MRI findings. Neurology 1997; 49(6):1605–1612.PubMedGoogle Scholar
  27. 27.
    Jacquemont S, Hagerman RJ, Leehey M et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical and neuroimaging correlates. Am J Hum Genet 2003; 72(4):869–878.PubMedCrossRefGoogle Scholar
  28. 28.
    Jacquemont S, Hagerman RJ, Hagerman PJ et al. Fragile-X syndrome and fragile X-associated tremor/ ataxia syndrome: two faces of FMR1. Lancet Neurol 2007; 6(1):45–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen S, Masyn K, Adams J et al. Molecular and imaging correlates of the fragile X-associated tremor/ ataxia syndrome. Neurology 2006; 67(8):1426–1431.PubMedCrossRefGoogle Scholar
  30. 30.
    Soontarapornchai K, Maselli R, Fenton-Farrell G et al. Abnormal nerve conduction features in fragile X premutation carriers. Arch Neurol 2008; 65(4):495–498.PubMedCrossRefGoogle Scholar
  31. 31.
    Leehey MA, Berry-Kravis E, Min SJ et al. Progression of tremor and ataxia in male carriers of the FMR1 premutation. Mov Disord 2007; 22(2):203–206.PubMedCrossRefGoogle Scholar
  32. 32.
    Jen JC, Graves TD, Hess EJ et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007; 130:2484–2493.PubMedCrossRefGoogle Scholar
  33. 33.
    Jen JC. Hereditary episodic ataxias. Ann N Y Acad Sci 2008; 1142:250–253.PubMedCrossRefGoogle Scholar
  34. 34.
    Imbrici P, Gualandi F, D'Adamo MC et al. A novel KCNA1 mutation identified in an Italian family affected by episodic ataxia type 1. Neuroscience 2008; 157(3):577–587.PubMedCrossRefGoogle Scholar
  35. 35.
    Eunson LH, Rea R, Zuberi SM et al. Clinical, genetic and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol 2000; 48(4):647–656.PubMedCrossRefGoogle Scholar
  36. 36.
    Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology 2004; 62(1):17–22.PubMedGoogle Scholar
  37. 37.
    Bertholon P, Chabrier S, Riant F et al. Episodic ataxia type 2: unusual aspects in clinical and genetic presentation. Special emphasis in childhood. J Neurol Neurosurg Psychiatry 2009; 80(11):1289–1292.PubMedCrossRefGoogle Scholar
  38. 38.
    Jodice C, Mantuano E, Veneziano L et al. Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 1997; 6(11):1973–1978.PubMedCrossRefGoogle Scholar
  39. 39.
    Jen JC, Yue Q, Karrim J et al. Spinocerebellar ataxia type 6 with positional vertigo and acetazolamide responsive episodic ataxia. J Neurol Neurosurg Psychiatry 1998; 65(4):565–568.PubMedCrossRefGoogle Scholar
  40. 40.
    Ophoff RA, Terwindt GM, Vergouwe MN et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca(su2+)??channel gene CACNL1A4. Cell 1996; 87(3):543–552.PubMedCrossRefGoogle Scholar
  41. 41.
    Riant F, Lescoat C, Vahedi K et al. Identification of CACNA1A large deletions in four patients with episodic ataxia. Neurogenetics 2010; 11(1):101–106.PubMedCrossRefGoogle Scholar
  42. 42.
    Steckley JL, Ebers GC, Cader MZ et al. An autosomal dominant disorder with episodic ataxia, vertigo and tinnitus. Neurology 2001; 57(8):1499–1502.PubMedGoogle Scholar
  43. 43.
    Cader MZ, Steckley JL, Dyment DA et al. A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia. Neurology 2005; 65(1):156–158.PubMedCrossRefGoogle Scholar
  44. 44.
    Farmer TW, Mustian VM. Vestibulocerebellar ataxia. A newly defined hereditary syndrome with periodic manifestations. Arch Neurol 1963; 8:471–480.PubMedCrossRefGoogle Scholar
  45. 45.
    Small KW, Pollock SC, Vance JM et al. Ocular motility in North Carolina autosomal dominant ataxia. J Neuroophthalmol 1996; 16(2):91–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Damji KF, Allingham RR, Pollock SC et al. Periodic vestibulocerebellar ataxia, an autosomal dominant ataxia with defective smooth pursuit, is genetically distinct from other autosomal dominant ataxias. Arch Neurol 1996; 53(4):338–344.PubMedCrossRefGoogle Scholar
  47. 47.
    Escayg A, De Waard M, Lee DD et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66(5):1531–1539.PubMedCrossRefGoogle Scholar
  48. 48.
    Jen JC, Wan J, Palos TP et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia and seizures. Neurology 2005; 65(4):529–534.PubMedCrossRefGoogle Scholar
  49. 49.
    de Vries B, Mamsa H, Stam AH et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol 2009; 66(1):97–101.PubMedCrossRefGoogle Scholar
  50. 50.
    Kerber KA, Jen JC, Lee H et al. A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch Neurol 2007; 64(5):749–752.PubMedCrossRefGoogle Scholar
  51. 51.
    Meijer IA, Hand CK, Grewal KK et al. A locus for autosomal dominant hereditary spastic ataxia, sax1, maps to chromosome 12p13. Am J Hum Genet 2002; 70(3):763–769.PubMedCrossRefGoogle Scholar
  52. 52.
    Melberg A, Hetta J, Dahl N et al. Autosomal dominant cerebellar ataxia deafness and narcolepsy. J Neurol Sci 1995; 134(1–2):119–129.PubMedCrossRefGoogle Scholar
  53. 53.
    Melberg A, Dahl N, Hetta J et al. Neuroimaging study in autosomal dominant cerebellar ataxia, deafness and narcolepsy. Neurology 1999; 53(9):2190–2192.PubMedGoogle Scholar
  54. 54.
    Trudeau MM, Dalton JC, Day JW et al. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia and mental retardation. J Med Genet 2006; 43(6):527–530.PubMedCrossRefGoogle Scholar
  55. 55.
    Genis D, Ferrer I, Sole JV et al. A kindred with cerebellar ataxia and thermoanalgesia. J Neurol Neurosurg Psychiatry 2009; 80(5):518–523.PubMedCrossRefGoogle Scholar
  56. 56.
    Ogawa M. Pharmacological treatments of cerebellar ataxia. Cerebellum 2004; 3(2):107–111.PubMedCrossRefGoogle Scholar
  57. 57.
    Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol 2009; 22(4):419–429.PubMedCrossRefGoogle Scholar
  58. 58.
    Trujillo-Martin MM, Serrano-Aguilar P, Monton-Alvarez F et al. Effectiveness and safety of treatments for degenerative ataxias: a systematic review. Mov Disord 2009; 24(8):1111–1124.PubMedCrossRefGoogle Scholar
  59. 59.
    Nakamura K, Yoshida K, Miyazaki D et al. Spinocerebellar ataxia type 6 (SCA6): clinical pilot trial with gabapentin. J Neurol Sci 2009; 278(1–2):107–111.PubMedCrossRefGoogle Scholar
  60. 60.
    Woods BT, Schaumburg HH. Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia. A unique and partially treatable clinicopathological entity. J Neurol Sci 1972; 17(2):149–166.PubMedCrossRefGoogle Scholar
  61. 61.
    Tuite PJ, Rogaeva EA, St George-Hyslop PH et al. Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion. Ann Neurol 1995; 38(4):684–687.PubMedCrossRefGoogle Scholar
  62. 62.
    Buhmann C, Bussopulos A, Oechsner M. Dopaminergic response in Parkinsonian phenotype of Machado-Joseph disease. Mov Disord 2003; 18(2):219–221.PubMedCrossRefGoogle Scholar
  63. 63.
    Kanai K, Kuwabara S, Arai K et al. Muscle cramp in Machado-Joseph disease: altered motor axonal excitability properties and mexiletine treatment. Brain 2003; 126:965–973.PubMedCrossRefGoogle Scholar
  64. 64.
    Pineda M, Montero R, Aracil A et al. Coenzyme Q(10)-responsive ataxia: 2-Year-treatment follow-up. Mov Disord 2010; 25(9):1262–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Lock RJ, Tengah DP, Williams AJ et al. Cerebellar ataxia, peripheral neuropathy, “gluten sensitivity” and anti-neuronal autoantibodies. Clin Lab 2006; 52(11–12):589–592.PubMedGoogle Scholar
  66. 66.
    Nanri K, Okita M, Takeguchi M et al. Intravenous immunoglobulin therapy for autoantibody-positive cerebellar ataxia. Intern Med 2009; 48(10):783–790.PubMedCrossRefGoogle Scholar
  67. 67.
    Xia H, Mao Q, Eliason SL et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10(8):816–820.PubMedCrossRefGoogle Scholar
  68. 68.
    Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 2005; 6(1):11–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Chan HY, Warrick JM, Gray-Board GL et al. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 2000; 9(19):2811–2820.PubMedCrossRefGoogle Scholar
  70. 70.
    Heiser V, Scherzinger E, Boeddrich A et al. Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci USA 2000; 97(12):6739–6744.PubMedCrossRefGoogle Scholar
  71. 71.
    Sanchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003; 421(6921):373–379.PubMedCrossRefGoogle Scholar
  72. 72.
    Yoshida H, Yoshizawa T, Shibasaki F et al. Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 2002; 10(2):88–99.PubMedCrossRefGoogle Scholar
  73. 73.
    Tanaka M, Machida Y, Niu S et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10(2):148–154.PubMedCrossRefGoogle Scholar
  74. 74.
    Heiser V, Engemann S, Brocker W et al. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc Natl Acad Sci USA 2002; 99:16400–16406.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang X, Smith DL, Meriin AB et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci USA 2005; 102(3):892–897.PubMedCrossRefGoogle Scholar
  76. 76.
    Kieran D, Kalmar B, Dick JR et al. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 2004; 10(4):402–405.PubMedCrossRefGoogle Scholar
  77. 77.
    Rimoldi M, Servadio A, Zimarino V. Analysis of heat shock transcription factor for suppression of polyglutamine toxicity. Brain Res Bull 2001; 56(3–4):353–362.PubMedCrossRefGoogle Scholar
  78. 78.
    Mosser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004; 23(16):2907–2918.PubMedCrossRefGoogle Scholar
  79. 79.
    Dedeoglu A, Kubilus JK, Jeitner TM et al. Therapeutic effects of cystamine in a murine model of Huntington’s disease. J Neurosci 2002; 22(20):8942–8950.PubMedGoogle Scholar
  80. 80.
    Karpuj MV, Becher MW, Springer JE et al. Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 2002; 8(2):143–149.PubMedCrossRefGoogle Scholar
  81. 81.
    Shults CW. Coenzyme Q10 in neurodegenerative diseases. Curr Med Chem 2003; 10(19):1917–1921.PubMedCrossRefGoogle Scholar
  82. 82.
    Ryu H, Rosas HD, Hersch SM et al. The therapeutic role of creatine in Huntington’s disease. Pharmacol Ther 2005; 108(2):193–207.PubMedCrossRefGoogle Scholar
  83. 83.
    Keene CD, Rodrigues CM, Eich T et al. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci USA 2002; 99(16):10671–10676.PubMedCrossRefGoogle Scholar
  84. 84.
    Ravikumar B, Vacher C, Berger Z et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6):585–595.PubMedCrossRefGoogle Scholar
  85. 85.
    Menzies FM, Rubinsztein DC. Broadening the therapeutic scope for rapamycin treatment. Autophagy 2010; 6(2):286–287.PubMedCrossRefGoogle Scholar
  86. 86.
    Sanchez I, Xu CJ, Juo P et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 1999; 22(3):623–633.PubMedCrossRefGoogle Scholar
  87. 87.
    Ona VO, Li M, Vonsattel JP et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 1999; 399(6733):263–267.PubMedCrossRefGoogle Scholar
  88. 88.
    Chen M, Ona VO, Li M et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6(7):797–801.PubMedCrossRefGoogle Scholar
  89. 89.
    Lesort M, Lee M, Tucholski J et al. Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 2003; 278(6):3825–3830.PubMedCrossRefGoogle Scholar
  90. 90.
    Gauthier S. Dimebon improves cognitive function in people with mild to moderate Alzheimer’s disease. Evid Based Ment Health 2009; 12(1):21.PubMedCrossRefGoogle Scholar
  91. 91.
    Liu J, Tang TS, Tu H et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 2009; 29(29):9148–9162.PubMedCrossRefGoogle Scholar
  92. 92.
    Mestre T, Ferreira J, Coelho MM et al. Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev 2009; 3:CD006455.PubMedGoogle Scholar
  93. 93.
    Ristori G, Romano S, Visconti A et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 2010; 74(10):839–845.PubMedCrossRefGoogle Scholar
  94. 94.
    Bordet T, Buisson B, Michaud M et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther 2007; 322(2):709–720.PubMedCrossRefGoogle Scholar
  95. 95.
    Strupp M, Kalla R, Glasauer S et al. Aminopyridines for the treatment of cerebellar and ocular motor disorders. Prog Brain Res 2008; 171:535–541.PubMedCrossRefGoogle Scholar
  96. 96.
    Alvina K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 2010; 30(21):7258–7268.PubMedCrossRefGoogle Scholar
  97. 97.
    Tsunemi T, Ishikawa K, Tsukui K et al. The effect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci 2010; 292(1–2):81–84.PubMedCrossRefGoogle Scholar
  98. 98.
    Dokmanovic M, Marks PA. Prospects: Histone deacetylase inhibitors. J Cell Biochem 2005; 96(2):293–304.PubMedCrossRefGoogle Scholar
  99. 99.
    Thomas EA, Coppola G, Desplats PA et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA 2008; 105(40):15564–15569.PubMedCrossRefGoogle Scholar
  100. 100.
    Naoi M, Maruyama W, Yi H et al. Mitochondria in neurodegenerative disorders: regulation of the redox state and death signaling leading to neuronal death and survival. J Neural Transm 2009.Google Scholar
  101. 101.
    Gatchel JR, Watase K, Thaller C et al. The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc Natl Acad Sci USA 2008; 105(4):1291–1296.PubMedCrossRefGoogle Scholar
  102. 102.
    Fernandez AM, Carro EM, Lopez-Lopez C et al. Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? Brain Res Rev 2005; 50(1):134–141.PubMedCrossRefGoogle Scholar
  103. 103.
    Leinninger GM, Feldman EL. Insulin-like growth factors in the treatment of neurological disease. Endocr Dev 2005; 9:135–159.PubMedCrossRefGoogle Scholar
  104. 104.
    Chintawar S, Hourez R, Ravella A et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci 2009; 29(42):13126–13135.PubMedCrossRefGoogle Scholar
  105. 105.
    Gage FH. Neurogenesis in the adult brain. J Neurosci 2002; 22(3):612–613.PubMedGoogle Scholar
  106. 106.
    Klein A, Boltshauser E, Jen J et al. Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics 2004; 35(2):147–149.PubMedCrossRefGoogle Scholar
  107. 107.
    Griggs RC, Moxley RT, 3rd, Lafrance RA et al. Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 1978; 28(12):1259–1264.PubMedGoogle Scholar
  108. 108.
    Boel M, Casaer P. Familial periodic ataxia responsive to flunarizine. Neuropediatrics 1988; 19(4):218–220.PubMedCrossRefGoogle Scholar
  109. 109.
    Strupp M, Kalla R, Dichgans M et al. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 2004; 62(9):1623–1625.PubMedGoogle Scholar
  110. 110.
    Alvina K, Khodakhah K. KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci 2010; 30(21):7249–7257.PubMedCrossRefGoogle Scholar
  111. 111.
    Kinali M, Jungbluth H, Eunson LH et al. Expanding the phenotype of potassium channelopathy: severe neuromyotonia and skeletal deformities without prominent Episodic Ataxia. Neuromuscul Disord 2004; 14(10):689–693.PubMedCrossRefGoogle Scholar
  112. 112.
    De Marcos FA, Ghizoni E, Kobayashi E et al. Cerebellar volume and long-term use of phenytoin. Seizure 2003; 12(5):312–315.PubMedCrossRefGoogle Scholar
  113. 113.
    Strupp M, Schuler O, Krafczyk S et al. Treatment of down-beat nystagmus with 3,4-diaminopyridine: a placebo-controlled study. Neurology 2003; 61(2):165–170.PubMedGoogle Scholar
  114. 114.
    Ilg W, Synofzik M, Brotz D et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 2009; 73(22):1823–1830.PubMedCrossRefGoogle Scholar
  115. 115.
    Missaoui B, Thoumie P. How far do patients with sensory ataxia benefit from so-called “proprioceptive rehabilitation”? Neurophysiol Clin 2009; 39(4–5):229–233.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Antoni Matilla-Dueñas
    • 1
  1. 1.Basic, Translational and Molecular Neurogenetics Research Unit, Department of Neurosciences, Health Sciences Research Institute Germans Trias i Pujol (IGTP)Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations