• Seth J. Perlman
  • Soe MarEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 724)


Leukodystrophies comprise a broad group of progressive, inherited disorders affecting mainly myelin. They often present after a variable period of normalcy with a variety of neurologic problems. Though the ultimate diagnosis is not found in many patients with leukodystrophies, distinctive features unique to them aid in diagnosis, treatment and prognostication. The clinical characteristics, etiologies, diagnostic testing and treatment options are reviewed in detail for some of the major leukodystrophies: X-linked adrenoleukodystrophy, Krabbe disease, metachromatic leukodystrophy, Pelizaeus-Merzbacher disease, Alexander disease, Canavan disease, megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease.


White Matter Disease Metachromatic Leukodystrophy Canavan Disease Alexander Disease ABCD1 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mar S, Noetzel M. Axonal damage in leukodystrophies. Pediatr Neurol 2010; 42(4):239–242.PubMedCrossRefGoogle Scholar
  2. 2.
    van der Knaap MS, Valk J, Barkhof F. Magnetic resonance of myelination and myelin disorders. 3rd ed. Berlin; New York: Springer; 2005.Google Scholar
  3. 3.
    Lyon G, Fattal-Valevski A, Kolodny EH. Leukodystrophies: clinical and genetic aspects. Top Magn Reson Imaging 2006; 17(4):219–242.PubMedCrossRefGoogle Scholar
  4. 4.
    Costello DJ, Eichler AF, Eichler FS. Leukodystrophies: classification, diagnosis and treatment. Neurologist 2009; 15(6):319–328.PubMedCrossRefGoogle Scholar
  5. 5.
    Bonkowsky JL, Nelson C, Kingston JL et al. The burden of inherited leukodystrophies in children. Neurology 2010.Google Scholar
  6. 6.
    van der Knaap MS, Breiter SN, Naidu S et al. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology 1999; 213(1):121–133.Google Scholar
  7. 7.
    Bezman L, Moser AB, Raymond GV et al. Adrenoleukodystrophy: incidence, new mutation rate and results of extended family screening. Ann Neurol 2001; 49(4):512–517.PubMedCrossRefGoogle Scholar
  8. 8.
    Moser HW, Mahmood A, Raymond GV. X-linked adrenoleukodystrophy. Nat Clin Pract Neurol 2007; 3(3):140–151.PubMedCrossRefGoogle Scholar
  9. 9.
    Restuccia D, Di Lazzaro V, Valeriani M et al. Neurophysiological abnormalities in adrenoleukodystrophy carriers. Evidence of different degrees of central nervous system involvement. Brain 1997; 120 (Pt 7):1139–1148.PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt S, Traber F, Block W et al. Phenotype assignment in symptomatic female carriers of X-linked adrenoleukodystrophy. J Neurol 2001; 248(1):36–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Moser HW, Moser AB, Smith KD et al. Adrenoleukodystrophy: phenotypic variability and implications for therapy. J Inherit Metab Dis 1992; 15(4):645–664.PubMedCrossRefGoogle Scholar
  12. 12.
    Moser AB, Kreiter N, Bezman L et al. Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann Neurol 1999; 45(1):100–110.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim JH, Kim HJ. Childhood X-linked adrenoleukodystrophy: clinical-pathologic overview and MR imaging manifestations at initial evaluation and follow-up. Radiographics 2005; 25(3):619–631.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar AJ, Rosenbaum AE, Naidu S et al. Adrenoleukodystrophy: correlating MR imaging with CT. Radiology 1987; 165(2):497–504.PubMedGoogle Scholar
  15. 15.
    Loes DJ, Fatemi A, Melhem ER et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 2003; 61(3):369–374.PubMedGoogle Scholar
  16. 16.
    Eichler FS, Barker PB, Cox C et al. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology 2002; 58(6):901–907.PubMedGoogle Scholar
  17. 17.
    Eichler FS, Itoh R, Barker PB et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 2002; 225(1):245–252.PubMedCrossRefGoogle Scholar
  18. 18.
    Semmler A, Kohler W, Jung HH et al. Therapy of X-linked adrenoleukodystrophy. Expert Rev Neurother 2008; 8(9):1367–1379.PubMedCrossRefGoogle Scholar
  19. 19.
    Cartier N, Aubourg P. Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-linked adrenoleukodystrophy. Brain Pathol 2010; 20(4):857–862.PubMedCrossRefGoogle Scholar
  20. 20.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326(5954):818–823.PubMedCrossRefGoogle Scholar
  21. 21.
    Fourcade S, Ruiz M, Guilera C et al. Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Hum Mol Genet 2010; 19(10):2005–2014.PubMedCrossRefGoogle Scholar
  22. 22.
    Crome L, Hanefeld F, Patrick D et al. Late onset globoid cell leucodystrophy. Brain 1973; 96(4):841-848. 23. T homas PK, Halpern JP, King RH et al. Galactosylceramide lipidosis: novel presentation as a slowly progressive spinocerebellar degeneration. Ann Neurol 1984; 16(5):618–620.CrossRefGoogle Scholar
  23. 24.
    Suzuki Y, Austin J, Armstrong D et al. Studies in globoid leukodystrophy: enzymatic and lipid findings in the canine form. Exp Neurol 1970; 29(1):65–75.PubMedCrossRefGoogle Scholar
  24. 25.
    Suzuki K, Suzuki Y. Globoid cell leucodystrophy (Krabbe’s disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci USA 1970; 66(2):302–309.PubMedCrossRefGoogle Scholar
  25. 26.
    Wenger DA, Rafi MA, Luzi P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat 1997; 10(4):268–279.PubMedCrossRefGoogle Scholar
  26. 27.
    Suzuki K. Twenty five years of the “psychosine hypothesis”: a personal perspective of its history and present status. Neurochem Res 1998; 23(3):251–259.PubMedCrossRefGoogle Scholar
  27. 28.
    Provenzale JM, Escolar M, Kurtzberg J. Quantitative analysis of diffusion tensor imaging data in serial assessment of Krabbe disease. Ann N Y Acad Sci 2005; 1064:220–229.PubMedCrossRefGoogle Scholar
  28. 29.
    Brockmann K, Dechent P, Wilken B et al. Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology 2003; 60(5):819–825.PubMedGoogle Scholar
  29. 30.
    Escolar ML, Poe MD, Provenzale JM et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 2005; 352(20):2069–2081.PubMedCrossRefGoogle Scholar
  30. 31.
    Cameron CL, Kang PB, Burns TM et al. Multifocal slowing of nerve conduction in metachromatic leukodystrophy. Muscle Nerve 2004; 29(4):531–536.PubMedCrossRefGoogle Scholar
  31. 32.
    Wang PJ, Hwu WL, Shen YZ. Epileptic seizures and electroencephalographic evolution in genetic leukodystrophies. J Clin Neurophysiol 2001; 18(1):25–32.PubMedCrossRefGoogle Scholar
  32. 33.
    Felice KJ, Gomez Lira M, Natowicz M et al. Adult-onset MLD: a gene mutation with isolated polyneuropathy. Neurology 2000; 55(7):1036–1039.PubMedGoogle Scholar
  33. 34.
    Marcao AM, Wiest R, Schindler K et al. Adult onset metachromatic leukodystrophy without electroclinical peripheral nervous system involvement: a new mutation in the ARSA gene. Arch Neurol 2005; 62(2):309–313.PubMedCrossRefGoogle Scholar
  34. 35.
    Wrobe D, Henseler M, Huettler S et al. A nonglycosylated and functionally deficient mutant (N215H) of the sphingolipid activator protein B (SAP-B) in a novel case of metachromatic leukodystrophy (MLD). J Inherit Metab Dis 2000; 23(1):63–76.PubMedCrossRefGoogle Scholar
  35. 36.
    Arbour LT, Silver K, Hechtman P et al. Variable onset of metachromatic leukodystrophy in a Vietnamese family. Pediatr Neurol 2000; 23(2):173–176.PubMedCrossRefGoogle Scholar
  36. 37.
    Berger J, Loschl B, Bernheimer H et al. Occurrence, distribution and phenotype of arylsulfatase A mutations in patients with metachromatic leukodystrophy. Am J Med Genet 1997; 69(3):335–340.PubMedCrossRefGoogle Scholar
  37. 38.
    Fluharty AL. (Updated 2008/09/23). Arylsulfatase A Deficiency. GeneReviews at GeneTests: Medical Genetics Information Resource (database online) Copyright, pmUniversity of Washington, Seattle: 1997-2010. Available at, Accessed 2010/09/15.Google Scholar
  38. 39.
    Polten A, Fluharty AL, Fluharty CB et al. Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med 1991; 324(1):18–22.PubMedCrossRefGoogle Scholar
  39. 40.
    Barth ML, Ward C, Harris A et al. Frequency of arylsulphatase A pseudodeficiency associated mutations in a healthy population. J Med Genet 1994; 31(9):667–671.PubMedCrossRefGoogle Scholar
  40. 41.
    Orchard PJ, Tolar J. Transplant Outcomes in Leukodystrophies. Seminars in Hematology 2010; 47(1):70–78.PubMedCrossRefGoogle Scholar
  41. 42.
    Sevin C, Cartier-Lacave N, Aubourg P. Gene therapy in metachromatic leukodystrophy. Int J Clin Pharmacol Ther 2009; 47 Suppl 1:S 128–131.Google Scholar
  42. 43.
    Sundaram KS, Lev M. Warfarin administration reduces synthesis of sulfatides and other sphingolipids in mouse brain. J Lipid Res 1988; 29(11):1475–1479.PubMedGoogle Scholar
  43. 44.
    Boulloche J, Aicardi J. Pelizaeus-Merzbacher disease: clinical and nosological study. J Child Neurol 1986; 1(3):233–239.PubMedCrossRefGoogle Scholar
  44. 45.
    Hudson LD. Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene. J Child Neurol 2003; 18(9):616–624.PubMedCrossRefGoogle Scholar
  45. 46.
    Willard HF, Riordan JR. Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 1985; 230(4728):940–942.PubMedCrossRefGoogle Scholar
  46. 47.
    Gencic S, Abuelo D, Ambler M et al. Pelizaeus-Merzbacher disease: an X-linked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein. Am J Hum Genet 1989; 45(3):435–442.PubMedGoogle Scholar
  47. 48.
    Hudson LD, Puckett C, Berndt J et al. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc Natl Acad Sci USA 1989; 86(20):8128–8131.PubMedCrossRefGoogle Scholar
  48. 49.
    Weimbs T, Stoffel W. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry 1992; 31(49):12289–12296.PubMedCrossRefGoogle Scholar
  49. 50.
    LeVine SM, Wong D, Macklin WB. Developmental expression of proteolipid protein and DM20 mRNAs and proteins in the rat brain. Dev Neurosci 1990; 12(4-5):235–250.PubMedCrossRefGoogle Scholar
  50. 51.
    Yang X, Skoff RP. Proteolipid protein regulates the survival and differentiation of oligodendrocytes. J Neurosci 1997; 17(6):2056–2070.PubMedGoogle Scholar
  51. 52.
    Garbern JY. Pelizaeus-Merzbacher disease: Genetic and cellular pathogenesis. Cell Mol Life Sci 2007; 646(1):50–65.CrossRefGoogle Scholar
  52. 53.
    Cailloux F, Gauthier-Barichard F, Mimault C et al. Genotype-phenotype correlation in inherited brain myelination defects due to proteolipid protein gene mutations. Clinical European Network on Brain Dysmyelinating Disease. Eur J Hum Genet 2000; 8(11):837–845.PubMedCrossRefGoogle Scholar
  53. 54.
    Garbern JY, Yool DA, Moore GJ et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 2002; 125(Pt 3):551–561.PubMedCrossRefGoogle Scholar
  54. 55.
    Seitelberger F. Neuropathology and genetics of Pelizaeus-Merzbacher disease. Brain Pathol 1995; 5(3):267–273.PubMedCrossRefGoogle Scholar
  55. 56.
    Barkovich AJ. Magnetic resonance techniques in the assessment of myelin and myelination. J Inherit Metab Dis 2005; 28(3):311–343.PubMedCrossRefGoogle Scholar
  56. 57.
    Nezu A, Kimura S, Takeshita S et al. An MRI and MRS study of Pelizaeus-Merzbacher disease. Pediatr Neurol 1998; 18(4):334–337.PubMedCrossRefGoogle Scholar
  57. 58.
    Plecko B, Stockler-Ipsiroglu S, Gruber S et al. Degree of hypomyelination and magnetic resonance spectroscopy findings in patients with Pelizaeus Merzbacher phenotype. Neuropediatrics 2003; 34(3):127–136.PubMedCrossRefGoogle Scholar
  58. 59.
    Takanashi J, Sugita K, Osaka H et al. Proton MR spectroscopy in Pelizaeus-Merzbacher disease. AJNR Am J Neuroradiol 1997; 18(3):533–535.PubMedGoogle Scholar
  59. 60.
    Spalice A, Popolizio T, Parisi P et al. Proton MR spectroscopy in connatal Pelizaeus-Merzbacher disease. Pediatr Radiol 2000; 30(3):171–175.PubMedCrossRefGoogle Scholar
  60. 61.
    Bonavita S, Schiffmann R, Moore DF et al. Evidence for neuroaxonal injury in patients with proteolipid protein gene mutations. Neurology 2001; 56(6):785–788.PubMedGoogle Scholar
  61. 62.
    Takanashi J, Inoue K, Tomita M et al. Brain N-acetylaspartate is elevated in Pelizaeus-Merzbacher disease with PLP1 duplication. Neurology 2002; 58(2):237–241.PubMedGoogle Scholar
  62. 63.
    Li R, Johnson AB, Salomons G et al. Glial fibrillary acidic protein mutations in infantile, juvenile and adult forms of Alexander disease. Ann Neurol 2005; 57(3):310–326.CrossRefGoogle Scholar
  63. 64.
    van der Knaap MS, Naidu S, Breiter SN et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol 2001; 22(3):541–552.PubMedGoogle Scholar
  64. 65.
    Balbi P, Seri M, Ceccherini I et al. Adult-onset Alexander disease: report on a family. J Neurol 2008; 255(1):24–30.PubMedCrossRefGoogle Scholar
  65. 66.
    Brenner M, Johnson AB, Boespflug-Tanguy O et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 2001; 27(1):117–120.PubMedCrossRefGoogle Scholar
  66. 67.
    Spalke G, Mennel HD. Alexander’s disease in an adult: clinicopathologic study of a case and review of the literature. Clin Neuropathol 1982; 1(3):106–112.PubMedGoogle Scholar
  67. 68.
    Quinlan RA, Brenner M, Goldman JE et al. GFAP and its role in Alexander disease. Exp Cell Res 2007; 313(10):2077–2087.CrossRefPubMedGoogle Scholar
  68. 69.
    Tomokane N, Iwaki T, Tateishi J et al. Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold. Am J Pathol 1991; 138(4):875–885.PubMedGoogle Scholar
  69. 70.
    Dinopoulos A, Gorospe JR, Egelhoff JC et al. Discrepancy between neuroimaging findings and clinical phenotype in Alexander disease. AJNR Am J Neuroradiol 2006; 27(10):2088–2092.PubMedGoogle Scholar
  70. 71.
    Kaul R, Gao GP, Aloya M et al. Canavan disease: mutations among Jewish and nonJewish patients. Am J Hum Genet 1994; 55(1):34–41.PubMedGoogle Scholar
  71. 72.
    Adachi M, Schneck L, Cara J et al. Spongy degeneration of the central nervous system (van Bogaert and Bertrand type; Canavan’s disease). A review. Hum Pathol 1973; 4(3):331–347.CrossRefGoogle Scholar
  72. 73.
    Traeger EC, Rapin I. The clinical course of Canavan disease. Pediatr Neurol 1998; 18(3):207–212.PubMedCrossRefGoogle Scholar
  73. 74.
    Kaul R, Gao GP, Balamurugan K et al. Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 1993; 5(2):118–123.PubMedCrossRefGoogle Scholar
  74. 75.
    Kaul R, Gao GP, Balamurugan K et al. Canavan disease: molecular basis of aspartoacylase deficiency. J Inherit Metab Dis 1994; 17(3):295–297.PubMedCrossRefGoogle Scholar
  75. 76.
    Matalon R, Kaul R, Casanova J et al. SSIEM Award. Aspartoacylase deficiency: the enzyme defect in Canavan disease. J Inherit Metab Dis 1989; 12 Suppl 2:329–331.PubMedCrossRefGoogle Scholar
  76. 77.
    Matalon R, Michals-Matalon K. Biochemistry and molecular biology of Canavan disease. Neurochem Res 1999; 24(4):507–513.PubMedCrossRefGoogle Scholar
  77. 78.
    Baslow MH. Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation. J Mol Neurosci 2003; 21(3):185–190.PubMedCrossRefGoogle Scholar
  78. 79.
    Cakmakci H, Pekcevik Y, Yis U et al. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature. Eur J Radiol 2010; 74(3):e161–171.PubMedCrossRefGoogle Scholar
  79. 80.
    Srikanth SG, Chandrashekar HS, Nagarajan K et al. Restricted diffusion in Canavan disease. Childs Nerv Syst 2007; 23(4):465–468.PubMedCrossRefGoogle Scholar
  80. 81.
    Assadi M, Janson C, Wang DJ et al. Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol 2010; 14(4):354–359.PubMedCrossRefGoogle Scholar
  81. 82.
    Janson CG, Assadi M, Francis J et al. Lithium citrate for Canavan disease. Pediatr Neurol 2005; 33(4):235–243.PubMedCrossRefGoogle Scholar
  82. 83.
    Singhal BS, Gorospe JR, Naidu S. Megalencephalic Leukoencephalopathy With Subcortical Cysts. Journal of Child Neurology 2003; 18(9):646–652.PubMedCrossRefGoogle Scholar
  83. 84.
    van der Knaap MS, Barth PG, Stroink H et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 1995; 37(3):324–334.PubMedCrossRefGoogle Scholar
  84. 85.
    Leegwater PA, Yuan BQ, van der Steen J et al. Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet 2001; 68(4):831–838.PubMedCrossRefGoogle Scholar
  85. 86.
    Topcu M, Saatci I, Topcuoglu MA et al. Megalencephaly and leukodystrophy with mild clinical course: a report on 12 new cases. Brain Dev 1998; 20(3):142–153.PubMedCrossRefGoogle Scholar
  86. 87.
    van der Knaap MS, Lai V, Köhler W et al. Megalencephalic leukoencephalopathy with cysts withoutMLC1defect: 2 phenotypes. Annals of Neurology 2010; 67(6):834–7.PubMedGoogle Scholar
  87. 88.
    Itoh N, Maeda M, Naito Y et al. An adult case of megalencephalic leukoencephalopathy with subcortical cysts with S93L mutation in MLC1 gene: a case report and diffusion MRI. Eur Neurol 2006; 56(4):243–245.PubMedCrossRefGoogle Scholar
  88. 89.
    van der Voorn JP, Pouwels PJ, Hart AA et al. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology 2006; 241(2):510–517.PubMedCrossRefGoogle Scholar
  89. 90.
    van der Knaap MS, Barth PG, Vrensen GF et al. Histopathology of an infantile-onset spongiform leukoencephalopathy with a discrepantly mild clinical course. Acta Neuropathol 1996; 92(2):206–212.PubMedCrossRefGoogle Scholar
  90. 91.
    Schiffmann R, Boespflug-Tanguy O. An update on the leukodsytrophies. Curr Opin Neurol 2001; 14(6):789–794.PubMedCrossRefGoogle Scholar
  91. 92.
    Fogli A, Boespflug-Tanguy O. The large spectrum of eIF2B-related diseases. Biochem Soc Trans 2006; 34(Pt 1):22–29.PubMedGoogle Scholar
  92. 93.
    van der Knaap MS, van Berkel CG, Herms J et al. eIF2B-related disorders: antenatal onset and involvement of multiple organs. Am J Hum Genet 2003; 73(5):1199–1207.PubMedCrossRefGoogle Scholar
  93. 94.
    Fogli A, Wong K, Eymard-Pierre E et al. Cree leukoencephalopathy and CACH/VWM disease are allelic at the EIF2B5 locus. Ann Neurol 2002; 52(4):506–510.PubMedCrossRefGoogle Scholar
  94. 95.
    Ohlenbusch A, Henneke M, Brockmann K et al. Identification of ten novel mutations in patients with eIF2B-related disorders. Hum Mutat 2005; 25(4):411.PubMedCrossRefGoogle Scholar
  95. 96.
    van der Voorn JP, van Kollenburg B, Bertrand G et al. The unfolded protein response in vanishing white matter disease. J Neuropathol Exp Neurol 2005; 64(9):770–775.PubMedCrossRefGoogle Scholar
  96. 97.
    van der Knaap MS, Pronk JC, Scheper GC. Vanishing white matter disease. Lancet Neurol 2006; 5(5):413–423.PubMedCrossRefGoogle Scholar
  97. 98.
    Fogli A, Rodriguez D, Eymard-Pierre E et al. Ovarian failure related to eukaryotic initiation factor 2B mutations. Am J Hum Genet 2003; 72(6):1544–1550.PubMedCrossRefGoogle Scholar
  98. 99.
    Fogli A, Schiffmann R, Bertini E et al. The effect of genotype on the natural history of eIF2B-related leukodystrophies. Neurology 2004; 62(9):1509–1517.PubMedGoogle Scholar
  99. 100.
    van der Knaap MS, Leegwater PA, van Berkel CG et al. Arg113His mutation in eIF2Bepsilon as cause of leukoencephalopathy in adults. Neurology 2004; 626(9):1598–1600.Google Scholar
  100. 101.
    Li W, Wang X, Van Der Knaap MS et al. Mutations linked to leukoencephalopathy with vanishing white matter impair the function of the eukaryotic initiation factor 2B complex in diverse ways. Mol Cell Biol 2004; 24(8):3295–3306.PubMedCrossRefGoogle Scholar
  101. 102.
    Vanderver A, Hathout Y, Maletkovic J et al. Sensitivity and specificity of decreased CSF asialotransferrin for eIF2B-related disorder. Neurology 2008; 70(23):2226–2232.PubMedCrossRefGoogle Scholar
  102. 103.
    Horzinski L, Huyghe A, Cardoso MC et al. Eukaryotic initiation factor 2B (eIF2B) GEF activity as a diagnostic tool for EIF2B-related disorders. PLoS One 2009; 4(12):e8318.PubMedCrossRefGoogle Scholar
  103. 104.
    Labauge P, Gelot A, Fogli A et al. Autosomal dominant leukodystrophy and childhood ataxia with central nervous system hypomyelination syndrome. Ann Neurol 2006; 60(4):485; author reply 485-486.PubMedCrossRefGoogle Scholar
  104. 105.
    van der Knaap MS, Scheper GC. Non-eIF2B-related cystic leukoencephalopathy of unknown origin. Ann Neurol 2006; 59(4):724.PubMedCrossRefGoogle Scholar
  105. 106.
    Labauge P, Fogli A, Castelnovo G et al. Dominant form of vanishing white matter-like leukoencephalopathy. Ann Neurol 2005; 58(4):634–639.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Division of Pediatric and Developmental Neurology Department of NeurologyWashington University School of MedicineSaint LouisUSA

Personalised recommendations