Advertisement

The Neurobiological Correlates of Meditation and Mindfulness

  • Jesse Edwards
  • Julio Peres
  • Daniel A. Monti
  • Andrew B. Newberg
Chapter
Part of the Mindfulness in Behavioral Health book series (MIBH)

Abstract

Mindfulness refers to a calm awareness of cognitions, sensations, ­emotions, and experiences. This state is frequently achieved through mindfulness meditation (MM) which is a practice that cultivates non-judgmental awareness of the present moment. MM has also become widely used in a variety of psychological, medical, and wellness populations. Recently, there have been a number of studies that have elucidated some of the neurophysiological processes involved with MM and other similar meditation practices. This chapter provides a review of that literature, which includes neuroanatomy, neurophysiology, neurotransmitter systems, and recent brain-imaging advances.

Keywords

Autonomic Nervous System Lateral Hypothalamus Mindfulness Meditation Meditation Practice Reticular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adair, K. C., Gilmore, R. L., Fennell, E. B., Gold M., & Heilman, K. M. (1995). Anosognosia during intracarotid barbiturate anaesthesia: Unawareness or amnesia for weakness. Neurology, 45, 241–243.PubMedGoogle Scholar
  2. Aghajanian, G., Sprouse, J., & Rasmussen, K. (1987). Physiology of the midbrain serotonin system. In H. Meltzer (Ed.), Psychopharmacology, the third generation of progress (pp. 141–149). New York: Raven Press.Google Scholar
  3. Albin, R., & Greenamyre, J. (1992). Alternative excitotoxic hypotheses. Neurology, 42, 733–738.PubMedGoogle Scholar
  4. Andrews, T. J., Halpern, S. D., & Purves, D. (1997). Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. Journal of Neuroscience, 17, 2859–2868.PubMedGoogle Scholar
  5. Armony, J. L., & LeDoux, J. E. (2000). In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 1073–1074). Cambridge: MIT Press.Google Scholar
  6. Baer, R. A. (2003). Mindfulness training as a clinical intervention: A conceptual and empirical review. Clinical Psychology: Science and Practice, 10, 125–143.CrossRefGoogle Scholar
  7. Baerentsen, K. B., Stødkilde-Jørgensen, H., Sommerlund, B., Hartmann T., Damsgaard-Madsen J., Fosnaes M., & Green, A.C. (2010). An investigation of brain processes supporting meditation. Cognitive Processing, 11(1), 57–84.PubMedCrossRefGoogle Scholar
  8. Brefczynaki-Lewis, J. A., Lutz, A., Schaefer H. S, Levinson D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the USA, 104, 11483–11488.CrossRefGoogle Scholar
  9. Bucci, D. J., Conley, M., & Gallagher, M. (1999). Thalamic and basal forebrain cholinergic connections of the rat posterior parietal cortex. Neuroreport, 10, 941–945.PubMedCrossRefGoogle Scholar
  10. Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211.PubMedCrossRefGoogle Scholar
  11. Cheramy, A., Romo, R., & Glowinski, J. (1987). Role of corticostriatal glutamatergic neurons in the presynaptic control of dopamine release. In Sandler, M., Feuerstein, C., & Scatton, B.(Eds.), Neurotransmitter interactions in the basal ganglia. New York: Raven.Google Scholar
  12. Chow, T. W., & Cummings, J. L. (1999). In B. L. Miller, & J. L. Cummings (Eds.), The human frontal lobes (pp. 3–26). New York: Guilford Press.Google Scholar
  13. Cornwall, J., & Phillipson, O. T. (1988). Mediodorsal and reticular thalamic nuclei receive collateral axons from prefrontal cortex and laterodorsal tegmental nucleus in the rat. Neuroscience Letters, 88, 121–126.PubMedCrossRefGoogle Scholar
  14. Creswell, J. D., Way, B. M., Eisenberger, N. I., & Lieberman, M. D. (2007). Neural correlates of dispositional mindfulness during affect labeling. Psychosomatic Medicine, 69, 560–565.PubMedCrossRefGoogle Scholar
  15. Davies, E., Keyon, C. J., & Fraser, R. (1985). The role of calcium ions in the mechanism of ACTH stimulation of cortisol synthesis. Steroids, 45, 557.CrossRefGoogle Scholar
  16. Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375.PubMedCrossRefGoogle Scholar
  17. Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.PubMedGoogle Scholar
  18. Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231–256.PubMedCrossRefGoogle Scholar
  19. Elias, A. N., Guich, S., & Wilson, A. F. (2000). Ketosis with enhanced GABAergic tone promotes physiological changes in transcendental meditation. Medical Hypotheses, 54, 660–662.PubMedCrossRefGoogle Scholar
  20. Fernandez-Duque, D., & Posner, M. I. (2001). Brain imaging of attentional networks in normal and pathological states. Journal of Clinical and Experimental Neuropsychology, 23, 74–93.PubMedCrossRefGoogle Scholar
  21. Fish, D. R., Gloor, P., Quesney, F. L., & Olivier, A. (1993). Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Brain, 116, 397–414.PubMedCrossRefGoogle Scholar
  22. Foote, S. (1987). Extrathalamic modulation of cortical function. Annual Review of Neuroscience, 10, 67–95.PubMedCrossRefGoogle Scholar
  23. Frith, C. D., Friston, K., Liddle, P. F., & Frackowiak, R. S. (1991). Willed action and the prefrontal cortex in man a study with PET. Proceedings of the Royal Society of London, 244, 241–246.CrossRefGoogle Scholar
  24. Gellhorn, E., & Kiely, W. F. (1972). Mystical states of consciousness: Neurophysiological and clinical aspects. The Journal of Nervous and Mental Disease, 154, 399–405.PubMedCrossRefGoogle Scholar
  25. Herzog, H., Lele, V. R., Kuwert, T., Langen K. J, Rota Kops E, & Feinendegen, L. E. (1990–1991). Changed pattern of regional glucose metabolism during Yoga meditative relaxation. Neuropsychobiol, 23, 182–187.Google Scholar
  26. Hugdahl, K. (1996). Cognitive influences on human autonomic nervous system function. Current Opinion in Neurobiology, 6, 252–258.PubMedCrossRefGoogle Scholar
  27. Infante, J. R., Peran, F., Martinez, M., Roldan, A., Poyatos, R., Ruiz, C., Samaniego, F., & Garrido, F. (1998). ACTH and beta-endorphin in transcendental meditation. Physiology and Behavior, 64, 311–315.PubMedCrossRefGoogle Scholar
  28. Infante, J. R., Torres-Avisbal, M., Pinel, P., Vallejo, J. A., Peran, F., Gonzalez, F., Contreras, p., Pacheco, C., Roldan, A., & Latre, J.M. (2001). Catecholamine levels in practitioners of the transcendental meditation technique. Physiology and Behavior, 72, 141–146.PubMedCrossRefGoogle Scholar
  29. Ingvar, D. H. (1994). The will of the brain: Cerebral correlates of willful acts. Journal of Theoretical Biology, 171, 7–12.PubMedCrossRefGoogle Scholar
  30. Ivanovski, B., & Malhi, G. S. (2007). The psychological and neurophysiological concomitants of mindfulness forms of meditation. Acta Neuropsychiatrica, 19, 76–91.CrossRefGoogle Scholar
  31. Janal, M. N., Colt, E. W., Clark, W. C., Glusman, M. (1984). Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: Effects of naxalone. Pain, 19, 13–25.PubMedCrossRefGoogle Scholar
  32. Jevning, R., Wallace, R. K., & Beidebach, M. (1992). The physiology of meditation: A review. A wakeful hypometabolic integrated response. Neuroscience and Biobehavioral Reviews, 16, 415–424.PubMedCrossRefGoogle Scholar
  33. Jevning, R., Wilson, A. F., & Davidson, J. M. (1978). Adrenocortical activity during meditation. Hormones and Behavior, 10, 54–60.PubMedCrossRefGoogle Scholar
  34. Jevtovic-Todorovic, V., Wozniak, D. F., Benshoff, N. D., & Olney, J. W. (2001). A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Research, 895, 264–267.PubMedCrossRefGoogle Scholar
  35. Joseph, R. (1996). Neuropsychology, neuropsychiatry, and behavioral neurology (p. 197). New York: Williams & Wilkins.Google Scholar
  36. Juckel, G. J., Mendlin, A., & Jacobs, B. L. (1999). Electrical stimulation of rat medial prefrontal cortex enhances forebrain serotonin output: Implications for electroconvulsive therapy and transcranial magnetic stimulation in depression. Neuropsychopharmacology, 21, 391–398.PubMedCrossRefGoogle Scholar
  37. Kakigi, R., Nakata, H., Inui, K., Hiroe, N., Nagata, O., Honda, M., Tanaka, S., Sadato, N., & Kawakami, M. (2005). Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation. European Journal of Pain, 9(5), 581–589.PubMedCrossRefGoogle Scholar
  38. Karnath, H. O., Ferber, S., & Himmelbach, M. (2001). Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature, 411, 950–953.PubMedCrossRefGoogle Scholar
  39. Kiss, J., Kocsis, K., Csaki, A., Gorcs, T. J., & Halasz, B. (1997). Metabotropic glutamate receptor in GHRH and beta-endorphin neurons of the hypothalamic arcuate nucleus. Neuroreport, 8, 3703–3707.PubMedCrossRefGoogle Scholar
  40. Kjaer, T. W., Bertelsen, C., Piccini, P., Brooks, D., Alving, J., & Lou, H. C. (2002). Increased dopamine tone during meditation-induced change of consciousness. Brain Research. Cognitive Brain Research, 13(2), 255–259.PubMedCrossRefGoogle Scholar
  41. Lazar, S. W., Bush, G., Gollub, R. L., Fricchione, G. L, Khalsa, G., & Benson, H. (2000). Functional brain mapping of the relaxation response and meditation. Neuroreport, 11, 1581–1585.PubMedCrossRefGoogle Scholar
  42. Leite, J. R., Ornellas, F. L., Amemiya, T. M., de Almeida, A. A., Dias, A. A., Afonso, R., Little, S., & Kozasa, E.H. (2010). Effect of progressive self-focus meditation on attention, anxiety, and depression scores. Perceptual and Motor Skills, 110(3 Pt 1), 840–848.PubMedCrossRefGoogle Scholar
  43. Lieberman, M. D., Eisenberger, N. I., Crocket, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words: Affect labeling disrupts amygdale activity in response to affective stimuli. Psychological Science, 18, 421–428.PubMedCrossRefGoogle Scholar
  44. Livesey, J. H., Evans, M. J., Mulligan, R., & Donald, R. A. (2000). Interactions of CRH, AVP and cortisol in the secretion of ACTH from perifused equine anterior pituitary cells: “Permissive” roles for cortisol and CRH. Endocrine Research, 26, 445–463.PubMedGoogle Scholar
  45. Lou, H. C., Kjaer, T. W., Friberg, L., Wildschiodtz, G., Holm, S., & Nowak, M. (1999). A 15O-H2O PET study of meditation and the resting state of normal consciousness. Human Brain Mapping, 7, 98–105.PubMedCrossRefGoogle Scholar
  46. Lutz, A., Greischar, L. L., Perlman, D. M., & Davidson, R. J. (2009). BOLD signal in insula is differentially related to cardiac function during compassion meditation in experts vs. novices. NeuroImage, 47(3), 1038–1046.PubMedCrossRefGoogle Scholar
  47. Lynch, J. C. (1980). The functional organization of posterior parietal association cortex. Behavior Brain Science, 3, 485–499.CrossRefGoogle Scholar
  48. Manfridi, A., Brambilla, D., & Mancia, M. (1999). Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. American Journal of Physiology, 277, R1488–R1492.PubMedGoogle Scholar
  49. Moller, M. (1992). Fine structure of pinealopetal innervation of the mammalian pineal gland. Microscopy Research and Technique, 21, 188–204.PubMedCrossRefGoogle Scholar
  50. Monti, D. A., Peterson, C., Kunkel, E. J., Hauck, W. W., Pequignot, E., Rhodes, L., & Brainard, G. C. (2006). A randomized controlled trial of ­mindfulness-based art therapy for women with cancer. Psycho-Oncology, 15(5), 363–373.PubMedCrossRefGoogle Scholar
  51. Mountcastle, V. B., Motter, B. C., & Anderson, R. A. (1980). Some further observations on the functional properties of neurons in the parietal lobe of the waking monkey. Brain Behavior Science, 3, 520–523.CrossRefGoogle Scholar
  52. Newberg, A., Alavi, A., Baime, M., Pourdehnad, M., Santanna, J., & d’Aquili, E. (2001). The measurement of regional cerebral blood flow during the complex cognitive task of meditation: A preliminary SPECT study. Psychiatry Research: Neuroimaging, 106, 113–122.PubMedCrossRefGoogle Scholar
  53. Newberg, A. B., & Iversen, J. (2003). The neural basis of the complex mental task of meditation: Neurotransmitter and neurochemical considerations. Medical Hypotheses, 61(2), 282–291.PubMedCrossRefGoogle Scholar
  54. Newberg, A., Pourdehnad, M., Alavi, A., & d’Aquili, E. (2003). Cerebral blood flow during meditative prayer: Preliminary findings and methodological issues. Perceptual and Motor Skills, 97, 625–630.PubMedGoogle Scholar
  55. Newman, J., & Grace, A. A. (1999). Binding across time: The selective gating of frontal and hippocampal systems modulating working memory and attentional states. Consciousness and Cognition, 8, 196–212.PubMedCrossRefGoogle Scholar
  56. O’Halloran, J. P., Jevning, R., Wilson, A. F., Skowsky, R., Walsh, R. N., & Alexander, C. (1985). Hormonal control in a state of decreased activation: Potentiation of arginine vasopressin secretion. Physiology and Behavior, 35, 591–595.PubMedCrossRefGoogle Scholar
  57. Olds, M. E., & Forbes, J. L. (1981). The central basis of motivation, intracranial self-stimulation studies. Annual Review of Psychology, 32, 523–574.PubMedCrossRefGoogle Scholar
  58. Orme-Johnson, D. W., Schneider, R. H., Son, Y. D., Nidich, S., & Cho, Z. H. (2006). Neuroimaging of meditation’s effect on brain reactivity to pain. Neuroreport, 17(12), 1359–1363.PubMedCrossRefGoogle Scholar
  59. Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge: MIT Press.Google Scholar
  60. Pardo, J. V., Fox, P. T., & Raichle, M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature, 349, 61–64.PubMedCrossRefGoogle Scholar
  61. Peng, C. K., Mietus, J. E., Liu, Y., Khalsa, G., Douglas, P. S., Benson, H., & Goldberger, A. L. (1999). Exaggerates heart rate oscillations during two meditation techniques. International Journal of Cardiology, 70, 101–107.PubMedCrossRefGoogle Scholar
  62. Peres, J. F., Foerster, B., Santana, L. G., Fereira, M. D., Nasello, A. G., Savoia, M., Moreira-Almeida, A., & Lederman, H. (2011). Police officers under attack: Resilience implications of an fMRI study. Journal of Psychiatric Research, 45(6), 727–734.PubMedCrossRefGoogle Scholar
  63. Peres, J., Mercante, J., & Nasello, A. G. (2005). Psychological dynamics affecting traumatic memories: Implications in psychotherapy. Psychology and Psychotherapy, 78(4), 431–447.PubMedCrossRefGoogle Scholar
  64. Peres, J. F., Newberg, A. B., Mercante, J. P., Simão, M., Albuquerque, V. E., Peres, M. J., & Nasello, A. G. (2007). Cerebral blood flow changes during retrieval of traumatic memories before and after psychotherapy: A SPECT study. Psychological Medicine, 37(10), 1481–1491.PubMedCrossRefGoogle Scholar
  65. Peterson, J., Loizzo, J., & Charlson, M. (2009). A program in contemplative self-healing: Stress, allostasis, and learning in the Indo-Tibetan tradition. Annals of the New York Academy of Sciences, 1172, 123–147.PubMedCrossRefGoogle Scholar
  66. Pietrowsky, R., Braun, D., Fehm, H. L., Pauschinger, P., & Born, J. (1991). Vasopressin and oxytocin do not influence early sensory processing but affect mood and activation in man. Peptides, 12, 1385–1391.PubMedCrossRefGoogle Scholar
  67. Poletti, C. E., & Sujatanond, M. (1980). Evidence for a second hippocampal efferent pathway to hypothalamus and basal forebrain comparable to fornix system: A unit study in the monkey. Journal of Neurophysiology, 44, 514–531.PubMedGoogle Scholar
  68. Portas, C. M., Rees, G., Howseman, A. M., Josephs, O., Turner, R., & Frith, C. D. (1998). A specific role for the thalamus in mediating the interaction attention and arousal in humans. Journal of Neuroscience, 18, 8979–8989.PubMedGoogle Scholar
  69. Ramachandran, V. S., Armel, C., & Foster, C. (1998). Object recognition can drive motion perception. Nature, 395, 852–853.PubMedCrossRefGoogle Scholar
  70. Ramachandran, V. S., & Gregory, R. L. (1991). Perceptual filling in of artificially induced scotomas in human vision. Nature, 350, 699–702.PubMedCrossRefGoogle Scholar
  71. Redding, F. K. (1967). Modification of sensory cortical evoked potentials by hippocampal stimulation. Electroencephalograph and Clinical Neurophysiology, 22, 74–83.CrossRefGoogle Scholar
  72. Renaud, L. P. (1996). CNS pathways mediating cardiovascular regulation of vasopressin. Clinical and Experimental Pharmacology and Physiology, 23, 157–160.PubMedCrossRefGoogle Scholar
  73. Saver, J. L., & Rabin, J. (1997). The neural substrates of religious experience. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 498–510.PubMedGoogle Scholar
  74. Shaji, A. V., & Kulkarni, S. K. (1998). Central nervous system depressant activities of melatonin in rats and mice. Indian Journal of Experimental Biology, 36, 257–263.PubMedGoogle Scholar
  75. Sim, M. K., & Tsoi, W. F. (1992). The effects of centrally acting drugs on the EEG correlates of meditation. Biofeedback and Self-Regulation, 17, 215–220.PubMedCrossRefGoogle Scholar
  76. Speca, M., Carlson, L. E., Goodey, E., & Angen, M. (2000). A randomized, wait-list controlled clinical trial: The effect of a mindfulness meditation-based stress reduction program on mood and symptoms of stress in cancer outpatients. Psychosomatic Medicine, 62(5), 613–622.PubMedGoogle Scholar
  77. Sudsuang, R., Chentanez, V., & Veluvan, K. (1991). Effects of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume an reaction time. Physiology and Behavior, 50, 543–548.PubMedCrossRefGoogle Scholar
  78. Thomas, A. G., Vornov, J. J., Olkowski, J. L., Merion, A. T., & Slusher, B. S. (2000). N-Acetylated alpha-linked acidic dipeptidase converts N-acetylaspartylglutamate from a neuroprotectant to a neurotoxin. Journal of Pharmacology and Experimental Therapeutics, 295, 16–22.PubMedGoogle Scholar
  79. Travis, F. (2001). Autonomic and EEG patterns distinguish transcending from other experiences during transcendental meditation practice. International Journal of Psychophysiology, 42, 1–9.PubMedCrossRefGoogle Scholar
  80. Van Bockstaele, E. J., & Aston-Jones, G. (1995). Integration in the ventral medulla and coordination of sympathetic, pain and arousal functions. Clinical and Experimental Hypertension, 17, 153–165.PubMedCrossRefGoogle Scholar
  81. Van Praag, H., & De Haan, S. (1980). Depression vulnerability and 5-Hydroxytryptophan prophylaxis. Psychiatry Research, 3, 75–83.PubMedCrossRefGoogle Scholar
  82. Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435–443.PubMedGoogle Scholar
  83. Vollenweider, F. X., Leenders, K. L., Scharfetter, C., Antonini, A., Maguire, P., Missimer, J., & Angst, J. (1997). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). European Neuropsychopharmacology, 7, 9–24.PubMedCrossRefGoogle Scholar
  84. Vollenweider, F. X., Vontobel, P., Hell, D., & Leenders, K. L. (1999). 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man – a PET study with [11C]raclopride. Neuropsychopharmacology, 20, 424–433.PubMedCrossRefGoogle Scholar
  85. Walton, K. G., Pugh, N. D., Gelderloos, P., & Macrae, P. (1995). Stress reduction and preventing hypertension: Preliminary support for a psychoneuroendocrine mechanism. Journal of Alternative and Complementary Medicine, 1, 263–283.CrossRefGoogle Scholar
  86. Waterhouse, B. D., Moises, H. C., & Woodward, D. J. (1998). Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation. Brain Research, 790, 33–44.PubMedCrossRefGoogle Scholar
  87. Weingartner, H., Gold, P., Ballenger, J. C., Smallberg, S. A., Summers, R., Rubinow, D. R., Post, R. M., & Goodwin, F. K. (1981). Effects of vasopressin on human memory functions. Science, 211, 601–603.PubMedCrossRefGoogle Scholar
  88. Yadid, G., Zangen, A., Herzberg, U., Nakash, R., & Sagen, J. (2000). Alterations in endogenous brain beta-endorphin release by adrenal medullary transplants in the spinal cord. Neuropsychopharmacology, 23, 709–716.PubMedCrossRefGoogle Scholar
  89. Zhelyazkova-Savova, M., Giovannini, M. G., & Pepeu, G. (1997). Increase of cortical acetylcholine release after systemic administration of chlorophenylpiperazine in the rat: An in vivo microdialysis study. Neuroscience Letters, 236, 151–154.PubMedCrossRefGoogle Scholar
  90. Ziegler, D. R., Cass, W. A., & Herman, J. P. (1999). Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. Journal of Neuroendocrinology, 11, 361–369.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jesse Edwards
    • 1
  • Julio Peres
    • 2
  • Daniel A. Monti
    • 1
  • Andrew B. Newberg
    • 1
  1. 1.Myrna Brind Center of Integrative MedicineThomas Jefferson University and HospitalPhiladelphiaUSA
  2. 2.ProSer – Institute of PsychiatryUniversidade de São PauloSão PauloBrazil

Personalised recommendations