Skip to main content

Flavonoids as Antioxidants in Plants Under Abiotic Stresses

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants

Abstract

Flavonoids make a relevant contribution to the response mechanisms of higher plants to a plethora of abiotic stresses. In addition to the long-reported functions as screeners of damaging short-wave solar radiation, flavonoids have been suggested as playing key functions as antioxidants in stressed plants, by inhibiting the generation and reducing reactive oxygen species (ROS) once formed. The ROS-scavenging properties of flavonoids are restricted to few structures, namely, the dihydroxy B-ring-substituted flavonoid glycosides. This structure–activity relationship conforms to the well-known stress-induced preferential biosynthesis of dihydroxy B-ring-substituted both flavones and flavonols. These flavonoids, especially the derivatives of quercetin, have been shown to greatly affect the movement of auxin at intra- and intercellular levels, and hence to tightly regulate the development of individual organs and the whole plant. The effectiveness of flavonoids to inhibit the activity of the auxin efflux facilitator proteins tightly depends on the chemical features that confer the antioxidant potential. In this review article, we discuss about (1) the effect of different abiotic stresses on the accumulation of individual flavonoids, (2) the potential role served by antioxidant flavonoids in the antioxidant machinery of plants exposed to severe stress conditions, and (3) the function of flavonoids as developmental regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotecion. New Phytol 186:786–793

    Article  PubMed  CAS  Google Scholar 

  • Agati G, Galardi C, Gravano E, Romani A, Tattini M (2002) Flavonoid distribution in tissues of Phyllyrea latifolia as estimated by microspectrofluorometry and multispectral fluorescence microimaging. Photochem Photobiol 76:350–360

    Article  PubMed  CAS  Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    Article  PubMed  CAS  Google Scholar 

  • Agati G, Stefano G, Biricolti S, Tattini M (2009) Mesophyll distribution of antioxidant flavonoids in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann Bot 104:853–861

    Article  PubMed  CAS  Google Scholar 

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212

    Article  PubMed  CAS  Google Scholar 

  • Aguilera J, Dummermuth A, Karsten U, Schriek R, Wiencke C (2002) Enzymatic defenses against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–441

    Google Scholar 

  • Akhtar TA, Lees HA, Lampi MA, Enstone D, Brain RA, Greenberg BM (2010) Photosynthetic redox imbalance influences flavonoid biosynthesis in Lemna gibba. Plant Cell Environ 33:1205–1219

    PubMed  CAS  Google Scholar 

  • Albert A, Sareedenchai V, Heller W, Seidlitz HK, Zidorn C (2009) Temperature is the key to altitudinal variation of phenolics in Arnica montana L. c.v. ARBO. Oecologia 160:1–8

    Article  PubMed  Google Scholar 

  • Ali RM, Singh N, Shohael AM, Hahn EJ, Paek K-Y (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 17:147–154

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Babu TS, Akhtar TA, Lampi MA, Tripuranthakam S, Dixon DG, Greenberg BM (2003) Similar stress responses are elicided by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol 44:1320–1329

    Article  PubMed  CAS  Google Scholar 

  • Baena González E (2010) Energy signaling in the regulation of gene expression during stress. Mol Plant 3:300–313

    Article  PubMed  CAS  Google Scholar 

  • Ballaré CL (2003) Stress under the sun: spotlight on ultraviolet-B responses. Plant Physiol 132:1725–1727

    Article  PubMed  CAS  Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    PubMed  CAS  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  PubMed  CAS  Google Scholar 

  • Betz GA, Gerstner E, Stich S, Winkler B, Welzl G, Kremmer E, Langebartels C, Heller W, Sandermann H, Ernst D (2009) Ozone affects shikimate pathway genes and secondary metabolites in saplings of European beech (Fagus sylvatica L.) grown under greenhouse conditions. Trees 23:539–555

    Article  Google Scholar 

  • Beveridge CA, Mathesius U, Rose RJ, Gresshoff PM (2007) Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol 10:44–51

    Article  PubMed  CAS  Google Scholar 

  • Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195

    Article  PubMed  CAS  Google Scholar 

  • Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implication for their antioxidant properties. Biochem J 330:1173–1178

    PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    Article  CAS  Google Scholar 

  • Caldwell MM, Robberecht R, Flint SD (1983) Internal filters: prospects for UV-acclimation in higher plants. Physiol Plant 58:445–450

    Article  CAS  Google Scholar 

  • Casano LM, Gómez LD, Lascano HR, Gonzáles CA, Trippi VS (1997) Inactivation and degradation of CuZn–SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol 38:433–440

    PubMed  CAS  Google Scholar 

  • Castellarin S, Matthews MA, Gaspero GD, Gambetta GA (2007a) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112

    Article  PubMed  CAS  Google Scholar 

  • Castellarin S, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007b) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 30:1381–1399

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  PubMed  CAS  Google Scholar 

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Eckey-Kaltenbach HE, Ernst D, Heller W, Sandermann H (1994) Biochemical plant response to ozone (IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants). Plant Physiol 104:67–74

    PubMed  CAS  Google Scholar 

  • Edwards WR, Hall JA, Rowlan AR, Schneider-Barfield T, Sun TJ, Patil MA, Pierce ML, Fuclher RG, Bell AA, Essenberg M (2008) Light filtering by epidermal flavonoids during the resistant response of cotton to Xanthomonas protects leaf tissue from light-dependent phytoalexin toxicity. Phytochemistry 69:2320–2328

    Article  PubMed  CAS  Google Scholar 

  • Erlejman AG, Verstraiten SV, Fraga CG, Oteiza PI (2004) The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free Radic Res 38:1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Feucht W, Treutter D, Polstre J (2004) Flavanol binding of nuclei from tree species. Plant Cell Rep 22:430–436

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Jones AR (2010) Endoplasmic reticulum: the rising compartment in auxin biology. Plant Physiol 154: 458–462

    Article  PubMed  CAS  Google Scholar 

  • Galston AW (1969) Flavonoids and photomorphogenesis in peas. In: Harborne JB, Swain T (eds) Perspectives in phytochemistry. Academic Press, New York, pp 193–204

    Google Scholar 

  • Geissler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Peer WA, Bailly A, Richards EL, Edjendal KF, Smith AP, Baroux C, Grossniklaus U, Muller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin by catalyzed by the Arabidopsis MDR/RGP transporter AtPGP1. Plant J 44:179–194

    Article  CAS  Google Scholar 

  • Gerhardt KE, Lampi MA, Greenberg BM (2008) The effects of far-red on plant growth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation. Photochem Photobiol 84:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidant in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Grace SC, Logan BA, Adams WW (1998) Seasonal differences in foliar content of chlorogenic acid, a phenylpropanoid antioxidant in Mahonia repens. Plant Cell Environ 21:513–521

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Remorini D, Massai R, Tattini M (2008) Interaction of water stress and solar irradiance on the physiology and biochemistry of Ligustrum ­vulgare. Tree Physiol 28:873–883

    PubMed  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Martinelli F, Piras M (2009) Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars. Environ Exp Bot 66: 117–125

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Giordano C, Biricolti S, Tattini M (2010) Ozone tolerance in Phaseolus vulgaris depends on more than one mechanism. Environ Pollut 158:3164–3171

    Article  PubMed  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Remorini D, Biricolti S, Fini A, Ferrini F, Nicese FP, Tattini M (2011) The impact of UV-radiation on the physiology and biochemistry of Ligustrum vulgare exposed to different visible-light irradiance. Environ Exp Bot 70:88–95

    Article  CAS  Google Scholar 

  • Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46:531–542

    Article  PubMed  CAS  Google Scholar 

  • Hannah MA, Weise D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  PubMed  CAS  Google Scholar 

  • Hatier JHB, Gould KS (2008) Foliar anthocyanins as modulators of stress signals. J Theor Biol 253:625–627

    Article  PubMed  CAS  Google Scholar 

  • He X, Huang W, Chen W, Dong T, Liu C, Chen Z, Xu S, Ruan Y (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci 21:199–203

    Article  CAS  Google Scholar 

  • Hernández JA, Campillo A, Jimenez A, Alarcon JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251

    Article  Google Scholar 

  • Hernández JA, Jimenez A, Mullineaxu P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  Google Scholar 

  • Hernández JA, Aguilar AB, Portillo B, Lopez-Gomez E, Beneyto JM, Garcia Legaz MF (2003) The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Funct Plant Biol 30: 1127–1137

    Article  Google Scholar 

  • Hernández I, Alegre L, van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidant in plants? Trends Plant Sci 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Hofmann RW, Campbell BD, Bloor SJ, Swinny EF, Markham KR, Ryan KG, Fountain DW (2003) Responses to UV-B radiation in Trifolium repens L. – physiological links to plant productivity and water availability. Plant Cell Environ 26:603–612

    Article  CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L, Hohtola A (2010) Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ 33:1239–1247

    PubMed  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  PubMed  CAS  Google Scholar 

  • Jansen M (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plant 116:423–439

    Article  CAS  Google Scholar 

  • Janzik I, Preiskowski S, Kneifel H (2005) Ozone has dramatic effects on the regulation of the prechorismate pathway in tobacco. Planta 223:20–27

    Article  PubMed  CAS  Google Scholar 

  • Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence system induced by ozone. Plant Cell Environ 17:783–794

    Article  CAS  Google Scholar 

  • Kanoun M, Goulas P, Biolley JP (2003) Describing and modelling ozone-dependent variation in flavonoid content of bean (Phaseolus vulgaris cv. Bergamo) leaves: a particular dose–response relationship analysis. Funct Plant Biol 30:561–570

    Article  CAS  Google Scholar 

  • Kolb CA, Käser MA, Kopecky J, Zotz G, Riederer M, Pfündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127:863–875

    Article  PubMed  CAS  Google Scholar 

  • Korn M, Peterek S, Petermock H, Heyer AG, Hincha DK (2008) Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ 31:313–327

    Article  CAS  Google Scholar 

  • Kotilainen T, Tegelberg R, Julkunen-Tiitto R, Lindfors A, Aphalo PJ (2008) Metabolic specific effects of solar UV-A and UV-B on alder and birch leaf phenolics. Glob Chang Biol 14:1294–1304

    Article  Google Scholar 

  • Kováĉik J, Klejdus B, Baĉkor M (2009) Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J Plant Physiol 166:1460–1464

    Article  PubMed  CAS  Google Scholar 

  • Kytridis VP, Manetas Y (2006) Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source. J Exp Bot 57:2203–2210

    Article  PubMed  CAS  Google Scholar 

  • Lamoral-Theys D, Pottier L, Dufrasne F, Nève J, Dubois J, Kornienko A, Kiss R, Ingrassia L (2010) Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr Med Chem 17:812–825

    Article  PubMed  CAS  Google Scholar 

  • Lazar G, Goodman HM (2006) MAX1, a regulator of flavonoid pathway, controls vegetative bud outgrowth in Arabidopsis. Proc Natl Acad Sci U S A 103:472–476

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wakao S, Fusher BB, Niyogi KK (2009) Sensing and responding to excess light stress. Annu Rev Plant Biol 50:239–260

    Article  CAS  Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601

    Article  PubMed  CAS  Google Scholar 

  • Løvdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  PubMed  CAS  Google Scholar 

  • Manetas Y (2006) Why some leaves are anthocyanic and why most anthocyanic leaves are red? Flora 201:163–177

    Article  Google Scholar 

  • Markham KR, Ryan KG, Bloor SJ, Mitchell KA (1998) An increase in luteolin: apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry 48:791–794

    Article  CAS  Google Scholar 

  • Mathesius U (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J Exp Bot 52:419–426

    PubMed  CAS  Google Scholar 

  • Melgar JC, Guidi L, Remorini D, Agati G, Degl’Innocenti E, Castelli S, Baratto MC, Faraloni C, Tattini M (2009) Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol 29:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Melidou M, Riganakos K, Galaris D (2005) Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: the role of iron chelation. Free Radic Biol Med 39:1591–1600

    Article  PubMed  CAS  Google Scholar 

  • Mendez M, Gwynn Jones D, Manetas Y (1999) Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris. New Phytol 144:275–282

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: control­ling where and how much. Trends Plant Sci 6:535–542

    Article  PubMed  CAS  Google Scholar 

  • Mustafa MG (1990) Biochemical basis of ozone toxicity. Free Radic Biol Med 9:245–265

    Article  PubMed  CAS  Google Scholar 

  • Oettmeier W, Heupel A (1972) Identification of flavonoids and cinnamic acid derivatives from spinach chloroplast preparations. Zeitschrift für Naturforschung B 27:177–183

    CAS  Google Scholar 

  • Ollson LC, Veit M, Bornman JF (1999) Epidermal transmittance and phenolic composition of atrazine-tolerant and atrazine-sensitive cultivars of Brassica napus grown under enhanced UV-B radiation. Physiol Plant 107:259–266

    Article  Google Scholar 

  • Olsen KM, Slimestad R, Lea US, Brede C, Løvdal T, Ruoff P, Verheul M, Lillo C (2009) Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ 32:286–299

    Article  PubMed  CAS  Google Scholar 

  • Paolacci AR, D’ovidio R, Marabottini R, Nali Lorenzini G, Abanavoli MR, Badiani M (2001) Ozone induces a differential accumulation of phenylalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars. Aust J Plant Physiol 28:425–428

    CAS  Google Scholar 

  • Pasqualini S, Batini P, Ederli L, Porceddu A, Piccioni C, De Marchis F, Antonielli F (2001) Effects of short-term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase. Plant Cell Environ 24:245–252

    Article  CAS  Google Scholar 

  • Pearse IS, Heath KD, Cheeseman JM (2005) Biochemical and ecological characterization of two peroxidise isoenzymes from the mangrove, Rhizophora mangle. Plant Cell Environ 28:612–622

    Article  CAS  Google Scholar 

  • Peer WA, Murphy AS (2006) Flavonoids as signal molecules. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 239–267

    Chapter  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators. Trends Plant Sci 12:556–563

    Article  PubMed  CAS  Google Scholar 

  • Peltonen PA, Vapaavouri E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Chang Biol 11:1305–1324

    Article  Google Scholar 

  • Peltzer D, Polle A (2001) Diurnal fluctuations of antioxidant systems in leaves of field-grown beech trees (Fagus sylvatica): response to light and temperature. Physiol Plant 111:158–164

    Article  CAS  Google Scholar 

  • Peltzer D, Dreyer E, Polle A (2002) Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiol Biochem 40:141–150

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase–ascorbate–glutathione–pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  PubMed  CAS  Google Scholar 

  • Polster J, Dithmar H, Burgemeister R, Friedemann G, Feucht W (2006) Flavonoids in plant nuclei: detection by laser microdissection and pressure catapulting (LMPC), in vivo staining, and UV–visible spectroscopic titration. Plant Physiol 128:163–174

    Article  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  • Pritzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356

    Article  CAS  Google Scholar 

  • Rausher MD (2006) The evolution of flavonoids and their genes. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 175–211

    Chapter  Google Scholar 

  • Remorini D, Melgar JC, Guidi L, Degl’Innocenti E, Castelli S, Traversi ML, Massai R, Tattini M (2009) Interaction effects of root-zone salinity and solar irradiance on the physiology and biochemistry of Olea europaea. Environ Exp Bot 65:210–219

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Papanga G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Ryan KG, Markham KR, Bloor SJ, Bradley JM, Mitchell KA, Jordan BR (1998) UV-B radiation induces increase in quercetin: kaempferol ratio in wild-type and transgenic lines of Petunia. Photochem Photobiol 68:323–330

    CAS  Google Scholar 

  • Ryan KG, Swinny EE, Markham KR, Winefield C (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sakihama Y, Mano J, Sano S, Asada K, Yamasaki H (2000) Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochem Biophys Res Commun 279:949–954

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34:347–366

    Article  PubMed  CAS  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BSJ (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 25:23735–23740

    Article  CAS  Google Scholar 

  • Saunders JA, Mc Clure JN (1976) The distribution of flavonoids in chloroplasts of twenty five species of vascular plants. Phytochemistry 15:809–810

    Article  CAS  Google Scholar 

  • Saviranta NMM, Julkunen-Tiitto R, Oksanen E, Karjalainen RO (2010) Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut 158:440–446

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A (2010) Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica). Food Chem 119:1293–1299

    Article  CAS  Google Scholar 

  • Schmitz-Hoerner R, Weissenböck G (2003) Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry 64:243–255

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld R, Heyser D, Godbold L, Polle A (2001) Cadmium induced changes in antioxidative system, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:878–898

    Article  Google Scholar 

  • Schwanz P, Polle A (2001a) Differential stress response of oxidative system to drought in pedunculate oak (Quercus robur) and maritime pine (Pinea pineaster) grown under high CO2 concentration. J Exp Bot 52:133–143

    Article  PubMed  CAS  Google Scholar 

  • Schwanz P, Polle A (2001b) Growth under elevated CO2 ameliorates defenses against photo-oxidative stress in poplar (Populus alba x tremula). Environ Exp Bot 45:43–53

    Article  PubMed  Google Scholar 

  • Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Sgarbi E, Baroni Fornasiero R, Lins AP, Medeghini Bonatti P (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957

    Article  CAS  Google Scholar 

  • Sharma YK, Davis KR (1994) Ozone-induced expression of stress related genes in Arabidopsis thaliana. Plant Physiol 105:1089–1096

    PubMed  CAS  Google Scholar 

  • Shehan JJ, Cheong H, Rechnitz GA (1998) The colorless flavonoids of Arabidopsis thaliana (Brassicaceae). I. A model system to study the orthodihydroxy structure. Am J Bot 85:467–475

    Article  Google Scholar 

  • Shiu CT, Lee TM (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865

    Article  PubMed  CAS  Google Scholar 

  • Soitamo A, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13

    Article  PubMed  CAS  Google Scholar 

  • Stafford HA (1991) Flavonoid evolution: an enzymic approach. Plant Physiol 96:680–685

    Article  PubMed  CAS  Google Scholar 

  • Streb PF, Feierebend J, Bigney R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20:1030–1040

    Article  CAS  Google Scholar 

  • Swain T (1986) Plant flavonoids in biology and medicine. In: Cody V, Middleton E Jr, Harborne JB (eds) Progress in clinical and biological research 213. Liss, New York, NY, pp 1–14

    Google Scholar 

  • Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytol 168:9–24

    Article  PubMed  CAS  Google Scholar 

  • Takahama U (1982) Suppression of carotenoids photobleaching by kaempferol in isolated chloroplasts. Plant Cell Physiol 23:859–864

    CAS  Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852

    Article  CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • Tattini M, Guidi L, Morassi Bonzi L, Pinelli P, Remorini D, Degl’Innocenti E, Giordano C, Massai R, Agati G (2005) On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phyllirea latifolia to high solar radiation. New Phytol 167:457–470

    Article  PubMed  CAS  Google Scholar 

  • Tattini M, Remorini D, Pinelli P, Agati G, Saracini E, Traversi ML, Massai R (2006) Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytol 170:779–794

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed  CAS  Google Scholar 

  • Turtola S, Rousi M, Pusenius J, Yamaji K, Heiska S, Tirkkonens V, Meier B, Julkunen Tiitto R (2005) Clone-specific responses in leaf phenolics of willows exposed to enhanced UVB radiation and drought stress. Glob Chang Biol 11:1655–1663

    Article  Google Scholar 

  • Valkama E, Salminen JP, Koricheva J, Pihlaia H (2003) Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish birch species. Ann Bot 91:643–655

    Article  PubMed  CAS  Google Scholar 

  • Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, Stromberg VK, de Koeyer DD, Schafleitner R, Willmot DB, Bonierbale M, Bohnert HJ, Grene R (2008) Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot 59: 2109–2123

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wamaker SI, Mandal J, Xu J, Cui X, Close TM (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Chen S, Deng L, Fritz E, Hüttermann A, Polle A (2007) Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 21:581–591

    Article  CAS  Google Scholar 

  • Wang R, Chen S, Zhou X, Shen X, Deng L, Zhu H, Shao J, Shi Y, Dai S, Fritz E, Hüttermann A, Polle A (2008) Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiol 28:947–957

    PubMed  CAS  Google Scholar 

  • Williams RJ, Spencer JPE, Rice-Evans CA (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  PubMed  CAS  Google Scholar 

  • Winkel BSJ (2006) The biosynthesis of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 71–95

    Chapter  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Sullivan JH, Garrett WM, Caperna TJ, Natarajan S (2008) Impact of solar Ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 69:38–48

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikeara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    PubMed  CAS  Google Scholar 

  • Zaprometov MN, Nikolaeva TN (2003) Chloroplast isolated from kidney bean leaves are capable of phenolic compound biosynthesis. Russ J Plant Physiol 50:623–626

    Article  CAS  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immuno­cytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Dixon RA (2009) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 14:72–80

    Google Scholar 

  • Zietz M, Weckmuller A, Schmidt S, Rohn S, Schreiner M, Krumbein A, Kroh LW (2010) Genotypic and climatic influence on the antioxidant activity of flavonoids in kale (Brassica oleracea var. sabellica). J Agric Food Chem 58:2123–2130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Tattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Di Ferdinando, M., Brunetti, C., Fini, A., Tattini, M. (2012). Flavonoids as Antioxidants in Plants Under Abiotic Stresses. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_9

Download citation

Publish with us

Policies and ethics