Skip to main content

Understanding and Exploiting the Impact of Drought Stress on Plant Physiology

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants

Abstract

Despite the enormous volume of literature relating to plant responses to drought, there is still much work to be done to fully unravel the impact of a range of possibly interacting processes on plant physiology during drought. This review highlights some of the key processes. Some aspects of plant physiological response to drought can actually be beneficial in agronomy, if exploited correctly. It is also clear that substantial genetic variation in response to drought exists within many species. Exploiting such variation in conventional breeding has led to the release of drought-tolerant varieties. Increasing demand for food and other plant-based products coupled with increasing frequency and distribution of drought means that more rapid development of suitable varieties is now required. Understanding the genetic basis of drought tolerance is therefore essential, and the explosion in genomic data for a wide range of plant species is currently being harnessed in enhancing genetic improvement programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Assimilation rate

ABA:

Abscisic acid

AQP:

Aquaporin

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CAT:

Catalase

δ13C:

Carbon isotope composition

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

E:

Evapotranspiration rate

EST:

Expressed sequence tag

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

g s :

Stomatal conductance

GSH:

Glutathione

MDA:

Monohydroascorbate

MDAR:

Monohydroascorbate reductase

MTX:

Methotrexate

p a :

Partial pressure of CO2 in the air

PEG:

Polyethylene glycol

p i :

Intercellular partial pressure of CO2

PIP:

Plasma membrane intrinsic protein

PLD:

Phospholipase D

POD:

Guaicol peroxidase

PRI:

Photochemical reflectance index

PSI:

Photosystem I

PSII:

Photosystem II

QTL:

Quantitative trait loci

RFLP:

Restriction fragment length polymor­phism

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TIP:

Tonoplast intrinsic protein

WUE:

Water use efficiency

WUE i :

Instantaneous water use efficiency.

References

  • Ahmad P, Umar S, Sharma S (2010) Mechanism of free radical scavenging and role of phytohormones in plants under abiotic stresses. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer Science  +  Business Media, Heidelberg, pp 99–118

    Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    PubMed  CAS  Google Scholar 

  • Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defences. Free Radic Biol Med 23:473–479

    PubMed  CAS  Google Scholar 

  • Almeida-Rodriguez AM, Cooke JEK, Yeh F, Zwiazek JJ (2010) Functional characterization of drought-responsive aquaporins in Populus balsamifera and Populus simonii  ×  balsamifera clones with different drought resistance strategies. Physiol Plant 140:321–333

    PubMed  CAS  Google Scholar 

  • Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci 176:119–129

    Google Scholar 

  • Araus JL, Bort J, Steduto P, Villegas D, Royo C (2003) Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Ann Appl Biol 14:129–141

    Google Scholar 

  • Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310

    PubMed  CAS  Google Scholar 

  • Bañón S, Ochoa J, Franco JA, Alarcón JJ, Sánchez-Blanco MJ (2006) Hardening of oldeander seedlings by deficit irrigation and low air humidity. Environ Exp Bot 56:36–43

    Google Scholar 

  • Blum A, Mayer J, Golan G (1982) Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Res 5:137–146

    Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    PubMed  CAS  Google Scholar 

  • Brendel O, Le Thiec D, Scotti-Saintagne C, Bodenes C, Kremer A, Guehl JM (2008) Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet Genom 4:263–278

    Google Scholar 

  • Cabrera-Bosquet L, Molero G, Nogues S, Araus JL (2009) Water and nitrogen conditions affect the relationships of Δ13C and Δ18O to gas exchange and growth in durum wheat. J Exp Bot 60:1633–1644

    PubMed  CAS  Google Scholar 

  • Cameron RWF, Harrison-Murray RS, Atkinson CJ, Judd HL (2006) Regulated deficit irrigation – a means to control growth in woody ornamentals. J Hort Sci Biotechnol 81:435–443

    Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo EM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    PubMed  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    PubMed  CAS  Google Scholar 

  • Cocozza C, Cherubini P, Regier N, Saurer M, Frey B, Tognetti R (2010) Early effects of water deficit on two parental clones of Populus nigra grown under different environmental conditions. Funct Plant Biol 37:244–254

    Google Scholar 

  • Condon AG, Richards RA (1992) Broad sense heritability and genotype  ×  environment interaction for carbon isotope discrimination in field-grown wheat. Aust J Agric Res 43:921–934

    Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    PubMed  CAS  Google Scholar 

  • Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33:481–489

    PubMed  CAS  Google Scholar 

  • David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS (2007) Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803

    PubMed  CAS  Google Scholar 

  • Davies WJ, Bacon MA, Thompson DS, Sobeih W, Rodríguez LG (2000) Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants’ chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J Exp Bot 51:1617–1626

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33: 648–654

    PubMed  CAS  Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:14147–11425

    Google Scholar 

  • Dodd IC, Theobald JC, Bacon MA, Davies WJ (2006) Alternation of wet and dry sides during partial rootzone drying irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol 33:1081–1089

    CAS  Google Scholar 

  • dos Santos TP, Lopes CM, Rodrigues ML, de Souza CR, Maroco JP, Pereira JS, Silva JR, Chaves MM (2003) Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Funct Plant Biol 30:663–671

    Google Scholar 

  • Egerton-Warburton LM, Balsamo RA, Close TJ (1997) Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol Plant 101: 545–555

    CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    PubMed  CAS  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    CAS  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use-efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    CAS  Google Scholar 

  • Fereres E, Connor DJ (2004) Sustainable water management in agriculture. In: Cabrera E, Cobacho R (eds) Challenges of the new water policies for the XXI century. A.A. Balkema, Lisse, pp 157–170

    Google Scholar 

  • Fischer RA, Wood JT (1979) Drought resistance in spring wheat cultivars. III. Yield association with morpho-physiological traits. Aust J Agric Res 30:1001–1020

    Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    PubMed  CAS  Google Scholar 

  • Franco JA, Martínez-Sánchez JJ, Fernández JA, Bañón S (2006) Selection and nursery production of ornamental plants for landscaping and xerogardening in semi-arid environments. J Hort Sci Biotechnol 81:3–17

    Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    PubMed  CAS  Google Scholar 

  • Galmés J, Pou A, Alsina MM, Tomàs M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681

    PubMed  Google Scholar 

  • Garcia-Plazaola JI, Hernández A, Olano JM, Becerril JM (2003) The operation of the lutein epoxide cycle correlates with energy dissipation. Funct Plant Biol 30: 319–324

    CAS  Google Scholar 

  • Gorantla M, Babu PR, Lachagari VBR, Feltus FA, Paterson AH, Reddy AR (2005) Functional genomics of drought stress response in rice: Transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22). Curr Sci 89:496–514

    CAS  Google Scholar 

  • Grant OM, Davies MJ, Longbottom H, Herrero A, Harrison-Murray R (2011) Application of deficit irrigation to controlling growth of hardy nursery stock. Acta Horticulturae 889:409–416

    Google Scholar 

  • Grant OM, Johnson AW, Davies MJ, James CM, Simpson DW (2010) Physiological and morphological diversity of cultivated strawberry (Fragaria  ×  ananassa) in response to water deficit. Environ Exp Bot 68:264–272

    CAS  Google Scholar 

  • Grant OM, Stoll M, Jones HG (2004) Partial rootzone drying does not affect fruit yields of raspberries. J Hort Sci Biotechnol 79:125–130

    Google Scholar 

  • Gutierrez-Rodriguez M, Reynolds MP, Larque-Saavedra A (2000) Photosynthesis of wheat in a warm, irrigated environment – II. Traits associated with genetic gains in yield. Field Crops Res 66:51–62

    Google Scholar 

  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research 16:277–286

    Google Scholar 

  • Hachez C, Zelazny E, Chaumont F (2006) Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochim Biophys Acta 1758:1142–1156

    PubMed  CAS  Google Scholar 

  • Harbinson J, Genty B, Foyer CH (1990) Relationship between photosynthetic electron transport and stromal enzyme activity in pea leaves. Plant Physiol 94: 545–553

    PubMed  CAS  Google Scholar 

  • Hartung W, Wilkinson S, Davies W (1998) Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell. J Exp Bot 51:361–367

    Google Scholar 

  • Hong YY, Zhang WH, Wang XM (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    PubMed  CAS  Google Scholar 

  • Inoue Y, Peñuelas J (2006) Relationship between light use efficiency and photochemical reflectance index in soybean leaves as affected by soil water content. Int J Remote Sens 27:5109–5114

    Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    PubMed  CAS  Google Scholar 

  • Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv Bot Res 41:107–163

    Google Scholar 

  • Juenger TE, Sen S, Bray E, Stahl E, Wayne T, McKay J, Richards JH (2010) Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana. Plant Cell Environ 33:1268–1284

    PubMed  CAS  Google Scholar 

  • Jury WA, Vaux H (2005) The role of science in solving the world’s emerging water problems. Proc Natl Acad Sci USA 102:15715–15720

    PubMed  CAS  Google Scholar 

  • Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73:290–302

    Google Scholar 

  • Kaldenhoff R, Kolling A, Richter G (1996) Regulation of the Arabidopsis thaliana aquaporin gene AthH2 (PIPlb). J Photochem Photobiol 36:351–354

    CAS  Google Scholar 

  • Kjellbom P, Larsson C, Johansson I, Karlsson M, Johanson U (1999) Aquaporins and water homeostasis in plants. Trends Plant Sci 4:1360–1385

    Google Scholar 

  • Klamkowski K, Treder W (2008) Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J Fruit Ornament Plant Res 16:179–188

    Google Scholar 

  • Knipfer T, Fricke W (2011) Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). J Exp Bot 62: 717–733

    PubMed  CAS  Google Scholar 

  • Kong YM, Elling AA, Chen B, Wang Deng X (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am J Plant Sci 1:69–76

    CAS  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-­deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    PubMed  CAS  Google Scholar 

  • Levi A, Paterson AH, Cakmk I, Saranga Y (2011) Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Physiol Plant 141: 265–275

    PubMed  CAS  Google Scholar 

  • Lopes MS, Reynolds MP (2010) Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct Plant Biol 37:147–156

    Google Scholar 

  • Luu D-T, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    CAS  Google Scholar 

  • Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51:1–8

    PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 11:15–19

    Google Scholar 

  • Munnik T, Vermeer JEM (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–669

    PubMed  CAS  Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosytem II. Physiologia Plantarum. doi:10.1111/j.1399-3054.2011. 01457.x

  • Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol 34:189–203

    Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photoysnthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    PubMed  CAS  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    PubMed  CAS  Google Scholar 

  • Pinheiro C, Chaves MM, Ricardo CP (2001) Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus. J Exp Bot 52:1063–1070

    PubMed  CAS  Google Scholar 

  • Price A, Courtois B (1999) Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regul 29:123–133

    CAS  Google Scholar 

  • Quarrie SA (1983) Characterization of spring wheat genotypes differing in drought-induced abscisic acid accumulation: II. Leaf Water Relat 34:1528–1540

    CAS  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86:709–716

    CAS  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and crop yield of rainfed bread wheat. Crop Sci 42:739–745

    Google Scholar 

  • Reynolds MP, Rajaram S, Sayre KD (1999) Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Sci 39:1611–1621

    Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166

    CAS  Google Scholar 

  • Sade N, Gebretsadik G, Seligmann RA, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254

    PubMed  CAS  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    PubMed  CAS  Google Scholar 

  • Secchi F, Lovisolo C, Schubert A (2007) Expression of OePIP2.1 aquaporin gene and water relations of Olea europaea twigs during drought stress and recovery. Ann Appl Biol 150:163–167

    CAS  Google Scholar 

  • Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert A (2006) Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta 225:381–392

    PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2010) Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant Cell Environ 33:1285–1297

    PubMed  CAS  Google Scholar 

  • Setter TL, Yan J, Warburton M, Ribaut J-M, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62:701–716

    PubMed  CAS  Google Scholar 

  • Sharp RG, Davies WJ (2009) Variability among species in the apoplastic pH signalling response to drying soils. J Exp Bot 60:4363–4370

    PubMed  CAS  Google Scholar 

  • Shiklomanov IA (1997) Comprehensive assessment of the freshwater resources of the world: assessment of water resources and water availability in the world. World Metereorological Organisatization/Stockholm Environment Institute, Geneva, Switzerland

    Google Scholar 

  • Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ‘genocentric’ age? J Exp Bot 56: 2777–2782

    PubMed  CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2005) Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct Plant Biol 32:45–53

    CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Street NR, Skogström O, Sjödin A, Tucker J, Rodríguez-Acosta M, Nilsson P, Jansson S, Taylor G (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–341

    PubMed  CAS  Google Scholar 

  • Súarez L, Zarco-Tejada PJ, González-Dugo V, Berni JAJ, Sagardoy R, Morales F, Fereres E (2010) Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery. Remote Sens Environ 114:286–298

    Google Scholar 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33:636–647

    PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–411

    PubMed  CAS  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MG, Gilliham M, Kaiser BM, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149: 445–460

    PubMed  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J-K (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2008) Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation. J Exp Bot 59:619–631

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant community. Plant Cell Environ 33:510–525

    PubMed  CAS  Google Scholar 

  • Yadav RS, Sehgal D, Vadez V (2011) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62:397–408

    PubMed  CAS  Google Scholar 

  • Zhang J, Deng Z, Cao S, Wang X, Zhang A, Zhang X (2008) Isolation of six novel aquaporin genes from Triticum aestivum L. and functional analysis of TaAQP6 in water redistribution. Plant Mol Biol Rep 26:32–45

    Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    CAS  Google Scholar 

  • Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron for Sustain Dev 30:201–214

    Google Scholar 

Download references

Acknowledgements

The author is funded by Marie Curie IEF grant 252196, “IMaging of Plant Responses to Environmental StresS” (IMPRESS). Advice from Nada Šurbanovski and Phil Dix on the sections on aquaporins and reactive oxygen species, respectively, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga M. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grant, O.M. (2012). Understanding and Exploiting the Impact of Drought Stress on Plant Physiology. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_5

Download citation

Publish with us

Policies and ethics