Skip to main content

Approaches to Increasing Salt Tolerance in Crop Plants

  • Chapter
  • First Online:

Abstract

Soil salinity is widely recognized as a major threat to global food security. Salinity and other abiotic stresses, which are expected to be more frequent in future due to disturbances in global climate, pose a serious challenge for plant scientists to ensure food supply for the growing world population. Several approaches have been advocated to address the salinity problem, but the most logical solution to maintain crop productivity in salt-affected areas is to enhance salt tolerance of crop plants. Due to the genetic and physiological complexity associated with salt tolerance, efforts to breed salt-tolerant plants have met with limited success. Although progress has been made in deciphering the genetic basis of salt tolerance, sustained efforts are needed to systematically dissect and utilize the natural variability in the available germplasm for improving crop adaptation in saline environments using modern genomics tools. Wide range of variability for salt tolerance in wild relatives, cultivars of major field crops, and halophytes offers bright prospect for discovery of superior salt-tolerant alleles for crop improvement. With an enhanced understanding of molecular mechanisms and the associated genes for component traits of salt tolerance, it would be possible to breed salt-tolerant plants using an integrated approach involving conventional breeding, physiological analysis, marker-assisted selection, and transgenic technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akoi A, Kanegami A, Mihara M, Kojima T, Shiraiwa M, Takahara H (2005) Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress. Gene 356:135–145

    Google Scholar 

  • Alam R, Sazzadur Rahman M, Seraj ZI, Thomson MJ, Ismail AM, Tumimbang-Raiz E, Gregorio GB (2011) Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed. doi:10.1111/j.1439-0523.2010. 01837.x

  • Ali AJ, Xu JL, Ismail AM, Fu BY, Vijayakumar CHM, Gao YM, Domingo J, Maghirang R, Yu SB, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li ZK (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res 97:66–76

    Google Scholar 

  • Ardie SW, Xie LN, Takahashi R, Liu SK, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2, 1 from Puccinellia tenuiflora and its functional comparison with OsHKT2, 1 from rice in yeast and Arabidopsis. J Exp Bot 60:3491–3502

    PubMed  CAS  Google Scholar 

  • Arzani A, Mirodjagh SS (1999) Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell Tiss Org Cult 58:67–72

    Google Scholar 

  • Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75:179–191

    PubMed  CAS  Google Scholar 

  • Asch F, Dingkuhn M, Dörffling K, Miezan K (2000) Leaf K+/Na+ ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F (2011) Enhanced expression of AtNHX1 in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotech. DOI: 10.1007/s12033-011-9399-1

  • Aslam M, Qureshi RH, Ahmed N (1993) A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil 150:99–107

    Google Scholar 

  • Baisakh N, Subudhi PK, Bhardwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel). Funct Integr Genomics 8:287–300

    PubMed  CAS  Google Scholar 

  • Baisakh N, Rajasekharan K, Deleon T, Biradar H, Parco A, Singh P, Subudhi PK (2009) Overexpression of myo-inositol phosphate synthase gene from a halophyte Spartina alterniflora confers salt tolerance in transgenic tobacco and rice. Plant and Animal Genome XVII, San Diego, CA, Jan 10–14 2009, Poster No. 616, Final abstract guide pp 117

    Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants, retrospect and prospects. Plant Cell Rep 27: 411–424

    PubMed  CAS  Google Scholar 

  • Bonilla P, Dvorak J, Mackill DJ, Deal K, Gregorio GB (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+⁄H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    PubMed  CAS  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester T, Munns R (2007) HKT1,5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    PubMed  CAS  Google Scholar 

  • Chen GP, Ma WS, Huang ZJ, Xu T, Xue YB, Shen YZ (2003) Isolation and characterization of TaGSK1 involved in wheat salt tolerance. Plant Sci 165: 1369–1375

    CAS  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    PubMed  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans Roy Soc Lond B Biol Sci 363:557–572

    CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    CAS  Google Scholar 

  • Collard BCY, Veracruz CM, McNally KL, Virk PS, Mackill DJ (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics 2008:524847. doi:10: 1155/2008/524847

    PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Phys 147:469–486

    CAS  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443

    CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    PubMed  CAS  Google Scholar 

  • Cotsaftis O, Plett D, Johnson AAT, Walia H, Wilson C, Ismail AM, Close T, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant 4:25–41

    PubMed  CAS  Google Scholar 

  • Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:110–119

    Google Scholar 

  • Cuin TA, Parsons D, Shabala S (2010) Wheat cultivars can be screened for salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium. Funct Plant Biol 37:255–263

    Google Scholar 

  • Das-Chatterjee A, Goswami L, Maitra S, Ghosh-Dastidar K, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988

    PubMed  CAS  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Santa-Maria G, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K/Na discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high salt and cold-responsive gene expression. Plant J 33:751–763

    PubMed  CAS  Google Scholar 

  • Dasgupta M, Sahoo MR, Kole PE, Mukherjce A (2008) Evaluation of orange-fleshed sweet potato (I pomea betatas L) genotypes for salt tolerance through shoot apex culture under in vitro Nace mediated salinity stress condition. Plant Cell Tiss. Organ Culture 94:161–170

    Google Scholar 

  • Dvorak J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L by the Kna1 locus transferred from Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Appl Genet 87:872–877

    Google Scholar 

  • Dwivedi S, Upadhyaya H, Subudhi PK, Gehring C, Bajic V, Ortiz R (2010) Enhancing abiotic stress tolerance in cereals through breeding and transgenic interventions. Plant Breed Rev 33:31–114

    Google Scholar 

  • Dziadczyk P, Bolibok H, Tyrka M, Hortynski JA (2003) In vitro selection of strawberry (Fragaria  ×  ananassa Duch.) clones tolerant to salt stress. Euphytica 132:49–55

    CAS  Google Scholar 

  • El-Hendawy SE, Hu Y, Schmidhalter U (2007) Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. J Integr Plant Biol 49:1352–1360

    CAS  Google Scholar 

  • Ellis RP, Forster BPP, Gordon DC, Handley LL, Keith RP, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour CM, Young G, Thomas WTB (2002) Phenotype/genotype associations of yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot 53:1163–1176

    PubMed  CAS  Google Scholar 

  • FAO (2010) FAO Land and plant nutrition management service. http://www.fao.org

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    PubMed  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Management 78:15–24

    Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25: 57–88

    CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    PubMed  CAS  Google Scholar 

  • Gandonou C, Errabii T, Abrini J, Idaomar M, Senhaji N (2006) Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tiss Org Cult 87:9–16

    CAS  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol 49:742–750

    CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu R (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99: 15898–15903

    PubMed  CAS  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl into the shoots. J Exp Bot 56:2365–2378

    PubMed  CAS  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894

    PubMed  CAS  Google Scholar 

  • Germanà MA (2010) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Organ Cult 104:283–300

    Google Scholar 

  • Ghassemi F, Jakeman A, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. UNSW Press, Sydney, Australia

    Google Scholar 

  • Gorham J (1994) Salt tolerance in the Triticeae: K/Na discrimination in some perennial wheat grasses and their amphiploids with wheat. J Exp Bot 45:441–447

    CAS  Google Scholar 

  • Gorham J, Hardy C, WynJones RG, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    CAS  Google Scholar 

  • Gorham J, Bridges J, Dubcovsky J, Dvořák J, Hollington PA, Luo MC, Khan JA (1997) Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. New Phytol 137:109–116

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Ann Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI Discussion Paper Series 22. International Rice Research Institute, P.O. Box 933, Manila 1099, Philippines

    Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for associated salinity tolerance and associated traits in rice. Field Crops Res 76:91–101

    Google Scholar 

  • Gu L, Liu Y, Zong X, Liu L, Li DP, Li DQ (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073

    PubMed  CAS  Google Scholar 

  • Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funct Plant Biol 37:634–645

    Google Scholar 

  • Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tiss Organ Cult 104:79–89

    CAS  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    PubMed  CAS  Google Scholar 

  • He X, Hou X, Shen Y, Huang Z (2011) TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Lett 585:1231–1237

    PubMed  CAS  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–62

    PubMed  CAS  Google Scholar 

  • Houshmand S, Arzani A, Maibody SAM, Feizi M (2005) Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments. Field Crops Res 91:345–354

    Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 35:12987–12992

    Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten RD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    PubMed  CAS  Google Scholar 

  • Huang W, Ma X, Wang Q, Gao Y, Xue Y, Niu X, Yu G, Liu Y (2008) Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). Plant Mol Biol 68:451–463

    PubMed  CAS  Google Scholar 

  • Husain S, von Caemmerer S, Munns R (2004) Control of salt transport from roots to shoots of wheat in saline soil. Funct Plant Biol 31:1115–1126

    CAS  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt Cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1–20

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: the physical science basis (Summary for policy makers). IPPC Secretariat, WMO, Geneva, Switzerland, p 21

    Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki S, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF type transcription factors involved in cold responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    PubMed  CAS  Google Scholar 

  • Jacobs A, Ford K, Kretschmer J, Tester M (2011) Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress. Plant Biotech J. doi:10.1111/j.1467-7652. 2011.00594.x

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na  +  exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142: 1537–1547

    PubMed  CAS  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1,4 and HKT1,5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot. doi:10.1093/jxb/err003

  • Jha B, Sharma A, Mishra A (2010) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep. 38:4823–4832

    Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh by mRNA analysis. Plant Cell Rep 25:865–876

    PubMed  CAS  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KB, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    PubMed  CAS  Google Scholar 

  • Karan R, Singla-Pareek SL, Pareek A (2009) Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9:411–417

    PubMed  CAS  Google Scholar 

  • Khan MA, Shirazi MU, Ali M, Mumtaz S, Sherin A, Ashraf MY (2006) Comparative performance of some wheat genotypes growing under saline water. Pak J Bot 38:1633–1639

    Google Scholar 

  • Kijne JW (2006) Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Res 97:3–18

    Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D (2011) ZmMKK4, a novel group C MAPK kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ. doi:10.1111/j.1365-3040.2011.02329.x

  • Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    PubMed  CAS  Google Scholar 

  • Kumari S, Sabharwal VP, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123

    PubMed  CAS  Google Scholar 

  • Lang NT, Yanagihara S, Buu BC (2001) A microsatellite marker for a gene conferring salt tolerance on rice at the vegetative and reproductive stages. SABRAO J Breed Genet 33:1–10

    Google Scholar 

  • Lee KS, Choi WR, Ko JC, Kim TS, Gregoria GP (2003a) Salimity tolerance of japonica and indica (Bryza sativa) at the seedling stage. Planta 216:1043–1046

    CAS  Google Scholar 

  • Lee SY, Lee JH, Kwon TO (2003b) Selection of salt-tolerant doubled haploids in rice anther culture. Plant Cell Tiss Organ Cult 74:143–149

    CAS  Google Scholar 

  • Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2007) Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed 126:43–46

    Google Scholar 

  • Li JY, He XW, Xu L, Zhou J, Wu P, Shou HX, Zhang FC (2008) Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. J Zhejiang Univ Sci B 9:132–140

    PubMed  CAS  Google Scholar 

  • Li WH, Zhang Q, Kong XQ, Wu CX, Ma XL, Zhang H, Zhao YX (2009) Salt tolerance is conferred in Arabidopsis by over-expression of the vacuolar Na+/H+ antiporter gene SsNHX2, an alternative splicing variant of SsNHX1, from Suaeda salsa. J Plant Biol 52:147–153

    CAS  Google Scholar 

  • Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010a) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29:977–986

    PubMed  CAS  Google Scholar 

  • Li TX, Zhang Y, Liu H, Wu YT, Li WB, Zhang HX (2010b) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soyabean for over six generations. Chinese Sci Bull 55:1127–1134

    CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    PubMed  CAS  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    CAS  Google Scholar 

  • Lisa LA, Seraj ZI, Elahi CMF, Das KC, Biswas K, Islam MR, Salam MA, Gomosta AR (2004) Genetic variation in microsatellite DNA, physiology and morphology of coastal saline rice (Oryza sativa L.) landraces of Bangladesh. Plant Soil 263:213–228

    CAS  Google Scholar 

  • Liu X, Baird WV (2003) Differential expression of genes regulated in response to drought or salinity stress in sunflower. Crop Sci 43:678–687

    CAS  Google Scholar 

  • Lu SY, Peng XX, Guo ZF, Zhang GY, Wang ZC, Wang CY, Pang CS, Fan Z, Wang JH (2007) In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis  ×  C-dactylon) and their physiological responses to salt and drought stress. Plant Cell Rep 26:1413–1420

    PubMed  CAS  Google Scholar 

  • Lv S, Zhang KW, Gao Q, Lian LJ, Song YJ, Zhang JR (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    PubMed  CAS  Google Scholar 

  • Ma L, Zhou E, Huo N, Zhou R, Wang G, Jia J (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117

    CAS  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance-current assessment. J Irrig Drain Div ASCE 103:115–134

    Google Scholar 

  • Mahalakshmi S, Christopher GSB, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224: 347–359

    PubMed  CAS  Google Scholar 

  • Majee M, Maitra S, Ghosh Dastidar K, Pattnail S, Chatterjee A, Hait NC, Das KP, Majumdar AL (2004) A novel salt-tolerant l-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279:28539–28552

    PubMed  CAS  Google Scholar 

  • Manneh B, Stam P, Struik PC, Bruce-Oliver S, van Eeuwijk FA (2007) QTL-based analysis of genotype-by-environment interaction for grain yield of rice in stress and non-stress environments. Euphytica 156:213–226

    Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94: 263–272

    Google Scholar 

  • Mao X, Zhang H, Tian S, Chang X, Jing R (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    PubMed  CAS  Google Scholar 

  • Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R (2011) Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics. doi:10.1007/s10142-011-0218-3

  • Melloul A, Collin M (2006) Hydrogeological changes in coastal aquifers due to sea level rise. Ocean Coastal Management 49:281–297

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agric Res 51:69–74

    CAS  Google Scholar 

  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Aust J Agr Res 54:627–635

    CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    PubMed  CAS  Google Scholar 

  • Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978–1985

    PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim M, Kim YK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138: 341–351

    PubMed  CAS  Google Scholar 

  • Oh SJ, Chang-Woo Kwon CW, Dong-Woog Choi DW, Sang Ik Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotech J 5:646–656

    CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–82

    PubMed  CAS  Google Scholar 

  • Ortel B, Atzorn R, Hause B, Feussner I, Miersch O, Wasternack C (1999) Jasmonate-induced gene expression of barley (Hordeum vulgare) leaves the link between jasmonate and abscisic acid. Plant Growth Regul 29:113–122

    CAS  Google Scholar 

  • Ozturk ZN, Talame V, Deyhoyos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48:551–573

    CAS  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genom 284:121–136

    CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    PubMed  CAS  Google Scholar 

  • Qiu Y, Li X, Zhi H, Shen D, Lu P (2009) Differential expression of salt tolerance related genes in Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee. J Zhejiang Univ Sci B 10:847–851

    PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusi D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    PubMed  CAS  Google Scholar 

  • Queirs F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734

    Google Scholar 

  • Rahman MS, Das KC, Das DK, Biswas K, Chowdhury MBH, Karim NH, Salam MA, Seraj ZI (2010) Breeding and anther derived lines of rice (Oryza sativa L.) for saline coastal areas of Bangladesh. Bangladesh J Bot 39:71–78

    Google Scholar 

  • Rahnama A, Poustini K, Munns R, James RA (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Google Scholar 

  • Ren Z, Gao J, Li L, Cai X, Huang W, Chao D, Zhu M, Wang Z, Luan S, Lin H (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    PubMed  CAS  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt affected soils. Funct Plant Biol 37: 613–620

    Google Scholar 

  • Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11:34. doi:10.1186/1471-2229-11-34

    PubMed  CAS  Google Scholar 

  • Sabouri H, Sabouri A (2008) New evidence of QTLs attributed to salinity rice. Afr J Biotech 7:4376–4383

    CAS  Google Scholar 

  • Sahi C, Agarwal M, Reddy MK, Sopory SK, Grover A (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theor Appl Genet 106:620–628

    PubMed  CAS  Google Scholar 

  • Schachtman DP, Munns R, Whitecross MI (1991) Variation of sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci 31:992–997

    CAS  Google Scholar 

  • Senadhira D, Zapata-Arias FJ, Gregorio GB, Alejar MS, de la Cruz HC, Padolina TF, Galvez AM (2002) Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res 76:103–110

    Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    PubMed  CAS  Google Scholar 

  • Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D-genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269

    CAS  Google Scholar 

  • Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Langridge P, Collins NC (2010) HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 10:277–291

    PubMed  CAS  Google Scholar 

  • Singh RK, Mishra B (1995) Screening F1 anther culture derivatives of rice for salt tolerance. In: Sharma B et al. (eds) Genetic research and education: current trends and the next fifty years. Indian Society of Genetics and Plant Breeding New Delhi. Ind J Genet Plant Breed (Special Issue): 509–513

    Google Scholar 

  • Singh RK, Mishra B, Senadhira D (1992) Promising salt tolerant F1 anther culture derivatives (ACDs). Int Rice Res Newslett 17:17

    Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    PubMed  CAS  Google Scholar 

  • Subudhi PK, Baisakh N (2011) Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cell Dev Biol-Plant 47:441–457

  • Sun ZB, Qi XY, Li PH, Wu CX, Zhao YX, Zhang H, Wang ZL (2008) Overexpression of a Thellungiella halophila CBL9 homolog, ThCBL9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana. J Plant Biol 51:25–34

    CAS  Google Scholar 

  • Taiz L (1992) The plant vacuole. J Exp Biol 172: 113–122

    PubMed  CAS  Google Scholar 

  • Tajbakhsh M, Zhou M, Chen Z, Mendham NJ (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust J Exp Agr 46:555–562

    Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed  CAS  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    PubMed  CAS  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    PubMed  CAS  Google Scholar 

  • Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T (2004) Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res 89:85–95

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    PubMed  CAS  Google Scholar 

  • Thalji T, Shalaldeh G (2007) Screening wheat and barley genotypes for salinity tolerance. J Agron 6:75–80

    CAS  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3: 148–160

    Google Scholar 

  • USDA-ARS (2005) Agricultural weather facility, Global crop production review. 1–5

    Google Scholar 

  • USDA-ARS (2008) Research Databases. (http://www.ars.usda.gov/Services/docs.htm?docid=8908)

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32:621–628

    PubMed  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139: 822–835

    PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    PubMed  CAS  Google Scholar 

  • Wang QY, Guan YC, Wu YR, Chen HL, Chen F, Chu CC (2008) Overexpression of a rice OsDREB1F gene increases salt, drought and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    PubMed  CAS  Google Scholar 

  • Wang ZF, Wang JF, Bao YM, Wu YY, Zhang HS (2011) Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178:297–307

    Google Scholar 

  • Wassmann F, Hien NX, Hoanh CT, Tuong TP (2004) Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Climate Change 66:89–107

    Google Scholar 

  • Wasternack C, Miersch O, Kramell R, Hause B, Ward J, Beale M, Boland W, Parthier B, Feussner I (1998) Jasmonic acid:biosynthesis, signal transduction, gene expression. Fett-Lipid 100:139–146

    CAS  Google Scholar 

  • Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas E, Gotebiowska G, Wedzony M (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 1–34

    Google Scholar 

  • Wei W, Bilsborrow P, Hooley P, Fincham D, Forster B (2001) Variation between two near isogenic barley (Hordeum uulgare) cultivars in expression of the B subunit of the vacuolar ATPase in response to salinity. Hereditas 135:227–231

    PubMed  CAS  Google Scholar 

  • Wheatley AO, Ahmad MH, Asemota HN (2003) Development of salt adaptation in in vitro greater yam (Dioscorea alata) plantlets. In Vitro Cell Dev Biol-Plant 39:346–353

    CAS  Google Scholar 

  • Wild A (2003) Soils, land and food: managing the land during the twenty-first century. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc B Biol Sci 363:703–716

    CAS  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Borner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    PubMed  CAS  Google Scholar 

  • Wu W, Su Q, Xia XY, Wang Y, Luan YS, An LJ (2008) The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica 159:17–25

    CAS  Google Scholar 

  • Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol Biol Rep 27:1–12

    CAS  Google Scholar 

  • Xu GY, Rocha PSCF, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta. doi:10.1007/s00425-011-1386-z

  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    CAS  Google Scholar 

  • Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169:187–196

    Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    PubMed  CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice 3rd edition. International Rice Research Institutes, Manila, Philippines, p 61

    Google Scholar 

  • Zair I, Chlyah A, Sabounji K, Tittahsen M, Chlyah H (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tiss Org Cult 73:237–244

    CAS  Google Scholar 

  • Zang J, Sun Y, Wang Y, Yang J, Li F, Zhou YL, Zhu LH, Reys J, Mohammadhosein F, Xu JL, Li Z (2008) Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China C Life Sci 51:583–591

    PubMed  Google Scholar 

  • Zeng L, Lesch SM, Grieve CM (2003a) Rice growth and yield respond to changes in water depth and salinity stress. Agric Water Manage 59:67–75

    Google Scholar 

  • Zeng L, Poss JA, Wilson C, Draz ASE, Gregorio GB, Grieve CM (2003b) Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica 129:281–292

    CAS  Google Scholar 

  • Zhang L, Zhang L, Luo J, Chen W, Hao M, Liu B, Yan Z, Zhang B, Zhang H, Zheng Y, Liu D, Yen Y (2011a) Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics 38:89–94

    PubMed  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011b) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    PubMed  CAS  Google Scholar 

  • Zhao FY, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Org Cult 86:349–358

    CAS  Google Scholar 

  • Zhu GY, Kinet JM, Bertin P, Bouharmont J, Lutts S (2000) Crosses between cultivars and tissue culture-selected plants for salt resistance improvement in rice, Oryza sativa. Plant Breed 119:497–504

    Google Scholar 

  • Zhu JQ, Zhang JT, Tang RJ, Lv QD, Wang QQ, Yang L, Zhang HX (2009) Molecular characterization of ThIPK2, an inositol poly- phosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiol Plantarum 136:407–425

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this study from the United States Department of Agriculture-CSREES is gratefully acknowledged. This manuscript is approved for publication by the Director of Louisiana Agricultural Experiment Station, USA as manuscript number 2011-306-5892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Subudhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karan, R., Subudhi, P.K. (2012). Approaches to Increasing Salt Tolerance in Crop Plants. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_4

Download citation

Publish with us

Policies and ethics