Skip to main content

Phytoremediation of Low Levels of Heavy Metals Using Duckweed (Lemna minor)

  • Chapter
  • First Online:

Abstract

The treatment of waste waters by bioremediation is nowadays an interesting approach due to low cost, simplicity, and the quality of being more environment friendly as compared to other remediation techniques. Certain plants as Lemna minor are able to remove heavy metals from contaminated waters. The removal efficiency of this plant was evaluated with different experiments for the contaminants arsenic, mercury, lead, chromium, ­copper, and zinc. The elements were monitored in water as function of time during a period of 15–25 days, for the experiments using plants, in contaminated waters and controls, with and without plants. The foliar ­tissues were also analyzed to determine the mass of contaminant accumulated by the specie. The removal efficiency varied from 3 to 30% depending on the element. The contaminants did not affect significantly the agronomical behavior of the Lemna minor at the levels used in the experiments (low levels). The plant is well-suited for the phytoremediation in particular ­mercury phytoremediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarado S, Guédez M, Marcó L, Graterol N, Anzalone A, Arroyo J, Záray G (2008) Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 19:8436–8440

    Article  Google Scholar 

  • Analytical Software (2003) STATISTIX 8 for Windows. Analytical Software, Tallahassee, FL

    Google Scholar 

  • Aportela P, González Y (2001) Evaluación toxicológica del dicromato de potasio en plantas de lechuga (Lactuca sativa). Anuario Toxicol 1:98–103

    Google Scholar 

  • Arroyave MP (2004) La lenteja de agua (Lemna minor L): una planta acuática promisoria. Rev EIA 1:33–38

    Google Scholar 

  • Ávila H, Soto A, Torres J, Araujo M, Gutiérrez E, Pirela R (2007) Metales pesados en la lenteja acuática (Lemna spp.) de la zona costera del Lago de Maracaibo. Bol Centr Invest Biol 41:114–122

    Google Scholar 

  • Azizur MR, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  Google Scholar 

  • Boniardi N, Rota R, Nano G (1999) Effect of dissolved metals on the organic load removal efficiency of Lemna gibba. Water Res 33(2):530–538

    Article  CAS  Google Scholar 

  • Burke D, Weis J (2000) Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf Sci 51:153–159

    Article  CAS  Google Scholar 

  • Carvalho K (2001) Removal of aqueous selenium by four aquatic plants. J Aquat Plant Manag 39:33–36

    Google Scholar 

  • Cheng J, Wong MH (2002) Effects of earthworms on Zn fractionation in soils. Biol Fertil Soils 36:72–78

    Article  CAS  Google Scholar 

  • Chua H (1998) Bio­accumulation of environmental residues of rare earth elements in aquatic flora Eichhornia crassipes (Mart.) Solms in Guangdong Province of China. Sci Total Environ 214:79–85

    Article  CAS  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  PubMed  CAS  Google Scholar 

  • Daus B, Wennrich R, Weiss H (2004) Sorption materials for arsenic removal from water: comparative study. Water Res 38:2948–2954

    Article  PubMed  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC

    Google Scholar 

  • Esteve-Turrillas F, Scott W, Pastor A, Dean J (2005) Uptake and bioavailability of persistent organic pollutants by plants grown in contaminated soil. J Environ Monit 7:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Juwarkar AA, Prachi J, Singh SK, Rayalu S (2006) Remediation of metal contaminated soil using a novel biotechnological approach. Environ Sci 1:4–6

    Google Scholar 

  • Kabata-Pendias A (2000) Trace elements in soils and plants, 3rd edn. CRC, Boca Raton, 413 pp

    Google Scholar 

  • Kara Y, Kara I (2005) Removal of cadmium from water using Duckweed (Lemna trisulca L.). Int J Agric Biol 7:660–662

    CAS  Google Scholar 

  • Kim J, Benjamin MM (2004) Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res 38:2053–2062

    Article  PubMed  CAS  Google Scholar 

  • Leblebici Z, Aksoy A (2011) Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut 214:175–184

    Article  PubMed  CAS  Google Scholar 

  • Leusch A, Volesky B (1995) The influence of film diffusion on cadmium biosorption by marine biomass. J Biotechnol 43:1–10

    Article  CAS  Google Scholar 

  • Lin TF, Wu JK (2001) Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res 35:2049–2057

    Article  PubMed  CAS  Google Scholar 

  • Maine MA, Duarte MV, Sune NL (2001) Cadmium uptake by floating macrophytes. Water Res 35:2629–2634

    Article  PubMed  CAS  Google Scholar 

  • Maity S, Chakravarty S, And BS, Roy BC (2005) A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Water Res 39:2579–2590

    Article  PubMed  CAS  Google Scholar 

  • Metcalf & Eddy, Inc. (1995) Ingeniería de aguas residuales. Tratamiento, vertido y reutilización. McGraw-Hill Interamericana de España S.A., Madrid, 1485 pp

    Google Scholar 

  • Miretzky P, Saralegui A, Fernandez C (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247–54

    Article  PubMed  CAS  Google Scholar 

  • Netzahuatl-Muñoz AR, Cristiani-Urbina MC, Cristiani-Urbina E (2008) Uso de la semilla de mango variedad Haden para la remoción de cromo hexavalente de soluciones acuosas. Rev Cub Quím 20:91–98

    Google Scholar 

  • Oporto C, Arce O, De Pauw N, Van den Broeck E (2001) Evaluación del potencial de Lemna minor para la remoción de Cr(VI) de aguas residuales. Rev Boliv Ecol 10:17–27

    Google Scholar 

  • Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200: 59–77

    Article  CAS  Google Scholar 

  • Özer D, Özer A, Dursun G (2000) Investigation of zinc(II) adsorption on Cladophora crispata in a two-staged reactor. J Chem Technol Biotechnol 75:410–416

    Article  Google Scholar 

  • Panda S, Choudhoury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, And MX (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337

    Article  PubMed  CAS  Google Scholar 

  • Ponce J, Febrero J, Gonzalez R, Romero O, Estrada O (2005) Perspectiva de la Lemna sp. para la alimentacion de peces. REDVET (revista electrónica de veterinaria) IV(3). http://www.veterinaria.org/revista/redvet/n030305.html. January 10th 2011

  • Posada M, Arroyave M (2006) Efectos del mercurio sobre algunas plantas acuáticas tropicales. Rev EIA 6: 57–67

    CAS  Google Scholar 

  • Prieto J, González C, Román A, Prieto F (2009) Plant ­contamination and phytotoxicity due to heavy metals from soil and water. Trop Subtrop Agroecosyst 10: 29–44

    Google Scholar 

  • Rodríguez C, Gómez H, Scilia R (2002) Estudio de la Sensibilidad espectro fotométrica del cromo III y del cromo VI. Rev Per Quím Ing Quím 5:29–36

    Google Scholar 

  • Shaban W, Rmalli A, Harrington CF, Ayub M, Parvez I, Haris I (2005) A biomaterial based approach for arsenic removal from water. J Environ Monit 7:279–282

    Article  Google Scholar 

  • So LM, Chu LM, Wong PK (2003) Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.). Chemosphere 52:1499–1503

    Article  PubMed  CAS  Google Scholar 

  • Song S, López-Valdivieso A, Hernández Campos DJ, Peng C, Monroy-Fernández MG, Razo-Soto I (2006) Arsenic removal from high arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res 40:364–372

    Article  PubMed  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  PubMed  CAS  Google Scholar 

  • Upendra K, Bandyopadhyay M (2006) Fixed bed column study for Cd(II) removal from wastewater using treated rice husk. J Hazard Mater 129:253–259

    Article  Google Scholar 

  • Velázquez J (1994) Plantas acuáticas de Venezuela. Universidad Central de Venezuela, CDCH, Caracas, pp 830–839

    Google Scholar 

  • Vidya R, Chandrasekaran N (2010) Ecotoxicological studies on the bioaccumulation of the heavy metals in the Vellore population, Tamil Nadu, India. Sci Technol 2:60–65

    CAS  Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Benemann JR (1996) Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology 57:779–786

    Google Scholar 

  • Wen B, Hu X, Liu Y, Wang W, Feng M, Shan X (2004) The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils. Biol Fertil Soils 40:181–187

    Article  CAS  Google Scholar 

  • Wen B, Liu Y, Hu X, Shan X (2006) Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils. Chemosphere 63:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Wollenberg JL, Peters SC (2009) Diminished mercury emission from waters with duckweed cover. J Geophys Res 114:10–29

    Article  Google Scholar 

  • Zayed A, Mel Lytle C, Quin J-H, Terry N (1998a) Chromium accumulation translocation and chemical speciation in vegetable crops. Planta 206:293–299

    Article  CAS  Google Scholar 

  • Zayed A, Gowtheman S, Terry N (1998b) Phytoac­cumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the CDCHT-UCLA for the financial support of this research under the project REG-001-2007 and the IAEA project ARCAL RLA 010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lué-Merú Marcó Parra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Parra, LM.M., Torres, G., Arenas, A.D., Sánchez, E., Rodríguez, K. (2012). Phytoremediation of Low Levels of Heavy Metals Using Duckweed (Lemna minor). In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_24

Download citation

Publish with us

Policies and ethics