Skip to main content

Oxidative Stress and Phytoremediation

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants

Abstract

Numerous environmental factors such as air and soil pollutants, soil ­conditions including heavy metal ions, temperature shock, drought, UV radiation, paraquats, pathogens and their secondary metabolites can cause the phenomenon of oxidative stress. Nowadays, the understanding of oxidative stress and plant resistance mechanisms seems to be of great importance. Plants sensitive to selected stressors have been employed as active or passive bioindicators of environmental pollution worldwide. By contrast, plants with enhanced tolerance versus pollutants are a promising tool in efficient bioremediation of areas contaminated with heavy metals and xenobiotics. Phytoremediation is a rapidly developing technique of soil and water cleanup in the case of both metals/metalloids and xenobiotics pollution. A lot of studies investigate the diverse aspects of phytoremediation including the mechanism of oxidative stress of plants and its impact on the process efficiency. The use of green plants capable of sequestering heavy metals in their aerial organs combined with uninterrupted high biomass production allows to achieve high efficiency of cleaning process. In our review, we discuss environmental factors causing oxidative stress in plants effecting the efficiency of remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  PubMed  CAS  Google Scholar 

  • Alia, Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS (2005) Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paarquat. Mycol Res 109:150–158

    Article  PubMed  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, salicylate-dependent signaling pathways. Plant Cell 12:1823–1836

    Article  PubMed  CAS  Google Scholar 

  • Ayar-Kayali H, Tarhan L (2004) The effect of glucose and maltose concentrations on pyruvate and ascorbate production, antioxidant enzyme activities and LPO levels in Fusarium equiseti. Process Biochem 39: 1823–1828

    Article  CAS  Google Scholar 

  • Ayar-Kayali H, Ozer N, Tarhan L (2002) Intracellular superoxide dismutase, catalase, and glutathione peroxidase and membrane lipid peroxide levels in Fusarium acuminatum upon environmental changes in a defined medium. Arch Biochem Biophys 400: 265–272

    Article  PubMed  CAS  Google Scholar 

  • Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N, Garand C (2001) Cytological analysis of defense related mechanisms in pea root tissues in response to colonization by nonpathogenic Fusarium oxysporum Fo47. Phytopathology 91:730–740

    Article  PubMed  CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  PubMed  CAS  Google Scholar 

  • Black V, Black C, Roberts J, Stewart C (2000) Impact of ozone on the reproductive development of plants. New Physiol 147:421–447

    Article  CAS  Google Scholar 

  • Borowiak K, Drzewiecka K, Magdziak Z, Gasecka M, Mleczek M (2011) Effect of Ca/Mg ratio on copper uptake, photosynthesis activity and growth of Cu (II) – treated Salix viminalis L. “Cannabina”. Photosynthetica – manuscript in revision

    Google Scholar 

  • Bouizgarne B, Brault M, Pennarun AM, Rona JP, Ouhdouch Y, Hadrami I, Bouteau F (2004) Electrophysiological responses to fusaric acid of root hairs from seedlings of date palm susceptible and resistant to Fusarium oxysporum f. sp. Albedinis. J Phytopathol 152:321–324

    Article  CAS  Google Scholar 

  • Bouizgarne B, El-Maarouf-Bouteau H, Madiona K, Biligui B, Monestiez M, Pennarun AM, Amiar Z, Rona JP, Ouhdouch Y, Hadrami IE, Bouteau F (2006a) A putative role for fusaric acid in biocontrol parasitic angiosperm Orobanche ramosa. Mol Plant Microbe Interact 19:550–556

    Article  PubMed  CAS  Google Scholar 

  • Bouizgarne B, El-Maarouf-Bouteau H, Frankart C, Reboutier D, Madiona K, Pennarun AM, Monestiez M, Trouverie J, Amiar Z, Briand J, Brault M, Rona JP, Ouhdouch Y, Hadrami EI, Bouteau F (2006b) Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signaling effects. New Phytol 169:209–218

    Article  PubMed  CAS  Google Scholar 

  • Boutigny AL, Richard-Forget F, Barreau C (2008) Natural mechanisms for cereal resistance to Fusarium mycotoxins accumulation. Review. Eur J Plant Pathol 121: 411–423

    Article  CAS  Google Scholar 

  • Cachinero JM, Hervas A, Jimenez-Diaz RM, Tena M (2002) Plant defense reactions against fusarium wilt in chickpea induced by incompatible race 0 of Fusarium oxysporum f. sp. ciceris and non host isolates of F. oxysporum. Plant Pathol 15:765–776

    Article  Google Scholar 

  • Carter JP, Rezanoor HN, Holden D, Desjardins AE, Plattner RD, Nicholson P (2002) Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur J Plant Pathol 108:573–583

    Article  CAS  Google Scholar 

  • Chen J, Zhou J, Goldsbroubh PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    Article  CAS  Google Scholar 

  • Chong J, Pierrel M-A, Atanassova R, Werck-Reichhart D, Fritig B, Saindrenan P (2001) Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol 125:318–328

    Article  PubMed  CAS  Google Scholar 

  • Ciardi JA, Tieman DM, Lund ST, Jones JB, Stall RE, Klee HJ (2000) Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol 123:81–92

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Czerpak R, Bajguz A (1998) Physiological and metabolic activity of salicylic acid in plants. Kosmos 47:83–93 (in polish)

    CAS  Google Scholar 

  • Daayf F, El Bellaj M, El Hassni M, J’Aiti F, El Hadrami I (2003) Elicitation of soluble phenolics in date palm (Phoenix dactylifera) callus by Fusarium oxysporum f. sp. albedinis culture medium. Environ Exp Bot 49:41–47

    Article  CAS  Google Scholar 

  • Dobosz B, Drzewiecka K, Waśkiewicz A, Irzykowska L, Bocianowski J, Karolewski Z, Kostecki M, Kruczyński Z, Krzyminiewski R, Weber Z, Goliński P (2011) Free radicals, salicylic acid and mycotoxins in asparagus after inoculation with Fusarium proliferatum and F. oxysporum. Appl Magn Reson 41:19–30

    Google Scholar 

  • Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotech 20:204–206

    Article  PubMed  CAS  Google Scholar 

  • Drzewiecka K, Borowiak, K, Bandurska H, Goliński P (2012) Salicylic acid – a potential biomarker of oxidative stress and ozone – induced cell heath caused by tropospheric ozone under ambient conditions. Acta Biol Hung 63:00–00 (article in press)

    Google Scholar 

  • Durner J, Shah J, Klessig D (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274

    Article  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  PubMed  CAS  Google Scholar 

  • Edgar CI, McGrath KC, Dombrecht B, Manners JM, Maclean DC, Schenk PM, Kazan K (2006) Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidosis thaliana. Aust Plant Pathol 35:581–591

    Article  CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89:2480–2484

    Article  PubMed  CAS  Google Scholar 

  • Fanelli C, Ricelli A, Reverberi M, Fabbri AA (2004) Aflatoxins and ochrotoxins in cereal grains: an open challenge. Recent Res Dev Crop Sci 1:295–317

    CAS  Google Scholar 

  • Ferrer E, Juan-Garcia A, Font G, Ruiz MJ (2009) Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol In Vitro 23: 1504–1509

    Article  PubMed  CAS  Google Scholar 

  • Gąsecka M, Mleczek M, Drzewiecka K, Magdziak Z, Chadzinikolau T, Rissmann I, Goliński P (2011) Physiological and morphological changes in Salix viminalis as a result of plant exposure to copper. J Environ Sci Heal A (article accepted for publication)

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants; potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defence responses in Arabidopsis – 2001 status. Curr Opin Plant Biol 4:301–308

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  PubMed  CAS  Google Scholar 

  • Goliński P, Waśkiewicz A, Gromadzka K (2009) Mycotoxins and mycotoxicoses under climatic conditions of Poland. Pol J Vet Sci 12:581–588

    PubMed  Google Scholar 

  • Gracia-Limones C, Hervas A, Navas-Cortes JA, Jimenez-Diaz RM, Tena M (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol Mol Plant Pathol 61:325–337

    Article  CAS  Google Scholar 

  • Green R (2002) Oxidative stress and acclimation mechanisms in plants. The Arabidopsis Book: Vol. 49, No. 1 pp. 1–20, BioOne Publishers, Washington, USA

    Article  PubMed  CAS  Google Scholar 

  • Gunterus A, Roze LV, Beaudry R, Linz JE (2007) Ethylene inhibits aflatoxin biosynthesis in Aspergillus parasiticus grown on peanuts. Food Microbiol 24:658–663

    Article  PubMed  CAS  Google Scholar 

  • He CY, Wolyn DJ (2005) Potential role for salicylic acid in induced resistance of asparagus roots to Fusarium oxysporum f. sp. asparagi. Plant Pathol 54:227–232

    Article  CAS  Google Scholar 

  • He CY, Hasiang T, Wolyn DJ (2002) Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis by nonpathogenic strains of Fusarium oxysporum. Plant Pathol 51: 225–230

    Article  Google Scholar 

  • Huang J-Q, Jiang H-F, Zhou Y-Q, Lei Y, Wang S-Y, Liao B-S (2009) Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int J Food Microbiol 130:17–21

    Article  PubMed  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • James CA, Strand SE (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20:237–241

    Article  PubMed  CAS  Google Scholar 

  • Jayashree T, Subramanyam C (1999) Antiaflatoxigenic activity of eugenol is due to onhibition of lipid peroxidation. Lett Appl Microbiol 28:179–183

    Article  PubMed  CAS  Google Scholar 

  • Jayashree T, Subramanyam C (2000) Oxidative stress is a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic Biol Med 10:981–985

    Article  Google Scholar 

  • Joseph GS, Jayaprakasha GK, Selvi AT, Jena BS, Sakariah KK (2005) Antiaflatoxigenic and antioxidant activities of Garcinia extracts. Int J Food Microbiol 101: 153–160

    Article  PubMed  CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230

    Article  PubMed  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D (2000) Nitric oxide and salicylic acid signaling in plant defense – colloquium. Proc Natl Acad Sci USA 97:8849–8855

    Article  PubMed  CAS  Google Scholar 

  • Kley D, Kleinman M, Sandermann H, Krupa S (1999) Photochemical oxidants: state of the science. Environ Poll 100:19–42

    Article  CAS  Google Scholar 

  • Klumpp A, Ansel W, Klumpp G, Calatayud V, Garrec JP, He S, Peñuelas J, Ribas À, Ro-Poulsen H, Rasmussen S, Sanz MJ, Vergne P (2006) Ozone pollution and ozone biomonitoring in European cities. Part I: Ozone concentrations and cumulative exposure indices at urban and suburban sites. Atmos Environ 40: 7963–7974

    Article  CAS  Google Scholar 

  • Koch JR, Creelman RA, Eshita SM, Seskar M, Mullet JE, Davis KR (2000) Ozone sensitivity in hybrid poplar correlates with intensity of both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol 123:487–496

    Article  PubMed  CAS  Google Scholar 

  • Kumar NP, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Landberg T, Greger M (2004) No phytochelatins (PC2 and PC3) detected in Salix viminalis. Physiol Plant 121:481–487

    Article  CAS  Google Scholar 

  • Lee H-J, Leon J, Raskin I (1995) Biosythesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92:4076–4079

    Article  PubMed  CAS  Google Scholar 

  • Logrieco A, Moretti A, Ritieni A, Caiaffa MF, Macchia L (2002) Beauvericin: chemistry, biology and significance. In: Upadhyay R (ed) Advances in microbial toxin research and its biotechnological exploitation. Kluwer Academic, New York

    Google Scholar 

  • Lone MI, He Z-L, Stoffella PJ, Yang X-E (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220

    Article  PubMed  CAS  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2007) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  CAS  Google Scholar 

  • Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Goliński P, Drzewiecka K (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotox Environ Safe 74:33–40

    Article  CAS  Google Scholar 

  • Mahoney N, Molyneux RJ (2004) Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). J Agric Food Chem 52:1882–1889

    Article  PubMed  CAS  Google Scholar 

  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W (2006) Involvement of trichothecenes in fusariose of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri 5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461

    Article  PubMed  CAS  Google Scholar 

  • Małecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defence to lead stress In subcellular compartments of pea root cells. Acta Biochim Pol 48:687–698

    PubMed  Google Scholar 

  • Mandal S, Mallick N, Mitra A (2009) Salicilic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649

    Article  PubMed  CAS  Google Scholar 

  • Marchner P, Godbold DL, Jutschhe G (1996) Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies L. karst.). Plant Soil 178:239–245

    Article  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Staples RC, Gil-ad NL (2001) Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58:33–41

    Article  PubMed  CAS  Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy metal induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Physiol 143:253–259

    Article  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16:162–175

    Article  PubMed  CAS  Google Scholar 

  • Metroux J-P (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci 2:1–3

    Google Scholar 

  • Meuwly P, Molders W, Buchala A, Metroux J-P (1995) Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol 109:1107–1114

    PubMed  CAS  Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Goliński P, Szentner K, Strażyńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg 34:1410–1418

    Article  CAS  Google Scholar 

  • Mleczek M, Kozłowska M, Kaczmarek Z, Magdziak Z, Goliński P (2011) Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio. Ecotoxicology 20:158–165

    PubMed  CAS  Google Scholar 

  • Molodchenkova OO, Adamovskaya VG, Yu AL, Gontarenko OV, Sokolov VM (2002) Maize response to salicylic acid and Fusarium moniliforme. Appl Biochem Microbiol 38:381–385

    Article  CAS  Google Scholar 

  • Molyneux RJ, Mahoney N, Kim JH, Campbell BC (2007) Mycotoxins in edible tree nuts. Int J Food Microbiol 119:72–78

    Article  PubMed  CAS  Google Scholar 

  • Nesci A, Rodriguez M, Etcheverry MG (2003) Control of Aspergillus growth and aflatoxin production using antioxidants at different conditions of water activity and pH. J Appl Microbiol 95:279–287

    Article  PubMed  CAS  Google Scholar 

  • Nesci A, Ferrari L, Etcheverry M (2008) Effect of synthetic antioxidants on stored maize grain mycoflora in situ. J Sci Food Agric 88:797–804

    Article  CAS  Google Scholar 

  • Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S (2006) Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Mol Plant Microbiol Interact 19:512–520

    Article  CAS  Google Scholar 

  • O’Donnell PJ, Jones JB, Antonine FR, Ciardi J, Klee HJ (2001) Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J 25:315–323

    Article  PubMed  Google Scholar 

  • Obrouchova NV, Bystrova EI, Ivanov VB, Anupova O, Seregin I (1998) Root growth responses to lead in young maize seedlings. Plant Soil 200:55–61

    Article  Google Scholar 

  • Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C (2003) Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl Environ Microbiol 69:5453–5462

    Article  PubMed  CAS  Google Scholar 

  • Paciolla C, Dipierro N, Mule G, Logrieco A, Dipierro S (2004) The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts. Physiol Mol Plant Pathol 65:49–56

    Article  CAS  Google Scholar 

  • Paciolla C, Ippolito MP, Logrieco A, Dipierro N, Mule G, Dipierro S (2008) A different trend of antioxidant defence responses makes tomato plants less susceptible to beauvericin than to T-2 mycotoxin phytotoxicity. Physiol Mol Plant Pathol 72:3–9

    Article  CAS  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    Article  PubMed  CAS  Google Scholar 

  • Pal M, Szalai G, Horvath E, Janda T, Paldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeged 46:119–120

    Google Scholar 

  • Pancheva T, Popova L, Uzunova A (1996) Effect of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    CAS  Google Scholar 

  • Pasqualini S, Torre G, Ferranti F, Ederli L, Piccioni C, Reale L (2002) Salicylic acid modulates ozone-induced hypersensitive cell death in tobacco plant. Physiol Plant 115:204–212

    Article  PubMed  CAS  Google Scholar 

  • Passone MA, Resnik SL, Etcheverry MG (2005) In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B1 accumulation by peanut Aspergillus section Flavi. J Appl Microbiol 99:682–691

    Article  PubMed  CAS  Google Scholar 

  • Pellinen R, Palva T, Kangasjrvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20:349–356

    Article  PubMed  CAS  Google Scholar 

  • Peng XL, Xu WT, Wang Y, Huang KL, Liang ZH, Zhao WW, Luo YB (2010) Mycotoxin ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis thaliana. Plant Cell Rep 29:153–161

    Article  PubMed  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Barałkiewicz D, Malecka A (2002) Accumulation and detoxification of lead in legumes. Phytochemistry 60:153–162

    Article  PubMed  CAS  Google Scholar 

  • Pierpoint WS (1997) The natural history of salicylic acid; plant product and mammalian medicine. Interdiscipl Sci Rev 22:45–52

    Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Ponts N, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F (2006) Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol Lett 258:102–107

    Article  PubMed  CAS  Google Scholar 

  • Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin M-N, Barreau C, Richard-Forget F (2009) Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol Lett 293:255–262

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative burst, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    Article  PubMed  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  PubMed  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–462

    Article  CAS  Google Scholar 

  • Reverberi M, Zjalic S, Punelli F, Ricelli A, Fabbri A, Fanelli C (2007) Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds. Food Addit Contam 24:1070–1075

    Article  PubMed  CAS  Google Scholar 

  • Reverberi M, Zjalic S, Ricelli A, Punelli F, Camera E, Fabbri C, Picardo M, Fanelli C, Fabbri A (2008) Modulation of antioxidant defence in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene. Eukaryot Cell 7:988–1000

    Article  PubMed  CAS  Google Scholar 

  • Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87:899–911

    Article  PubMed  CAS  Google Scholar 

  • Ribnicky DM, Shulaev V, Raskin I (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118:565–572

    Article  PubMed  CAS  Google Scholar 

  • Roze LV, Calvo AM, Gunterus A, Beaudry R, Kall M, Linz JE (2004) Ethylene modulates development and toxin biosynthesis in Aspergillus possibly via an ethylene sensor-mediated signaling pathway. J Food Prot 67:438–447

    PubMed  CAS  Google Scholar 

  • Salerno MI, Gianinazzi S, Gianinazzi-Pearson M (2000) Effects on growth and comparison of root tissue colonization patterns of Eucalyptus viminalis by pathogenic or non pathogenic strains of Fusarium oxysporum. New Phytol 146:317–324

    Article  Google Scholar 

  • Samardakiewicz S, Woźny A (2000) The distribution of lead in duckweed (Lemna minor L.) root tip. Plant Soil 226:107–111

    Article  CAS  Google Scholar 

  • Samuel M, Miles G, Ellis B (2000) Ozone treatment rapidly activates MAP kinase signaling in plants. Plant J 22:367–376

    Article  PubMed  CAS  Google Scholar 

  • Sarowar S, Lee J-Y, Ahn E-R, Pai H-S (2008) A role of hexokinases in plant resistance to oxidative stress and pathogen infection. J Plant Biol 51:341–346

    Article  CAS  Google Scholar 

  • Schmidt-Heydt M, Magan N, Geisen R (2008) Stress induction of mycotoxins biosynthesis genes by abiotic factors. FEMS Microbiol Lett 284:142–149

    Article  PubMed  CAS  Google Scholar 

  • Schraudner M, Moder W, Wiese C, Camp WV, Inze D, Langebartels C, Sandermann H (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel-W3. Plant J 16:235–245

    Article  CAS  Google Scholar 

  • Semighini CP, Harris SD (2008) Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179:1919–1932

    Article  PubMed  CAS  Google Scholar 

  • Seregin I, Shpigun L, Ivanov V (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–533

    Article  CAS  Google Scholar 

  • Shlaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  Google Scholar 

  • Stroiński A, Kozłowska M (1997) Cadmium-induced oxidative stress in potato tuber. Acta Soc Bot Pol 66:189–195

    Google Scholar 

  • Thatcher LF, Anderson JP, Singh KB (2005) Plant defence responses: what have learnt from Arabidopsis? Funct Plant Biol 32:1–19

    Article  CAS  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939

    Article  PubMed  CAS  Google Scholar 

  • Thulke OU, Conrath U (1998) Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J 14:35–43

    Article  PubMed  CAS  Google Scholar 

  • Troshina NB, Yarullina LG, Valeec AS, Maksimov IV (2007) Salicylic acid induces resistance to septoria nodorum Berk in wheat. Biol Bull 34:451–456

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effect of metal on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794

    Article  PubMed  CAS  Google Scholar 

  • Vasyukova NI, Ozeretskovskaya OL (2007) Induced plant resistance and salicylic acid: a review. Appl Biochem Microbiol 43:367–373

    Article  CAS  Google Scholar 

  • Verma S, Dubey R (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  CAS  Google Scholar 

  • Waśkiewicz A, Drzewiecka K, Bocianowski J, Karolewski Z, Irzykowska L, Dobosz B, Kostecki M, Weber Z, Krzyminiewski R, Goliński P (2011) Plant-pathogen interactions after asparagus inoculation with Fusarium proliferatum and Fusarium oxysporum – a multidisciplinary approach. Int J Food Microbiol – manuscript under review

    Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel H, Overmyer K, Kangasjarvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25:717–726

    Article  CAS  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    PubMed  CAS  Google Scholar 

  • Woźny A (1995) Lead in plant cells; uptake, reactions, resistance. Sorus, Poznan, Poland (in polish)

    Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588

    Article  PubMed  CAS  Google Scholar 

  • Ye SF, Zhou YH, Sun Y, Zou LY, Yu JQ (2006) Cinnamic acid causes oxidative stress in cucumber roots, and promoted incidence of Fusarium wilt. Environ Exp Bot 56:255–262

    Article  CAS  Google Scholar 

  • Yruela I (2005) Toxic metals in plants: copper in plants. Braz J Plant Physiol 171:145–156

    Article  Google Scholar 

  • Yu JQ, Shou SY, Qian YR, Hu WH (2000) Autotoxic potential in cucurbit crops. Plant Soil 223:147–151

    Article  CAS  Google Scholar 

  • Zenk M (1996) Heavy metal deteoxification. Curr Opin Plant Biol 3:211–216

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of the Polish Ministry of Science and Higher Education (grants no.: NN310301934, NN 305045836 and NN305372538) in chapter preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Goliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Drzewiecka, K., Mleczek, M., Waśkiewicz, A., Goliński, P. (2012). Oxidative Stress and Phytoremediation. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_23

Download citation

Publish with us

Policies and ethics