Skip to main content

The Bisretinoids of RPE Lipofuscin: A Complex Mixture

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Vitamin A aldehyde-derived compounds accumulate in retinal pigment epithelial (RPE) cells as bisretinoid lipofuscin pigments and have been linked to some retinal disorders, including recessive ABCA4-related disease, dominant ELOVL-4-related maculopathy, retinal degeneration caused by mutations in the Best-1 gene, and age-related macular degeneration. These bisretinoid compounds are likely unique to RPE cells. A2E is the best known but is not the only bisretinoid constituent of RPE lipofuscin; the others include all-trans-retinal dimer, all-trans-retinal dimer-PE, all-trans-retinal dimer-E, and A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE). Isomers and photooxidized forms of these compounds are further additions to this mixture and all are constituents of human RPE lipofuscin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ben-Shabat S, Itagaki Y, Jockusch S et al (2002a) Formation of a nona-oxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew Chem Int Ed 41:814–817

    Article  CAS  Google Scholar 

  • Ben-Shabat S, Parish CA, Vollmer HR et al (2002b) Biosynthetic studies of A2E, a major fluorophore of RPE lipofuscin. J Biol Chem 277:7183–7190

    Article  PubMed  CAS  Google Scholar 

  • Boulton M, Docchio F, Dayhaw-Barker P et al (1990) Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 30:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Clancy CMR, Krogmeier JR, Pawlak A et al (2000) Atomic force microscopy and near-field scanning optical microscopy measurements of single human retinal lipofuscin granules. J Phys Chem B 104:12098–12101

    Article  CAS  Google Scholar 

  • Crabb JW, Miyagi M, Gu X et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM, Dice JR (2000) When lysosomes get old. Exp Gerontol 35:119–131

    Article  PubMed  CAS  Google Scholar 

  • Feeney-Burns L, Eldred GE (1983) The fate of the phagosome: conversion to ‘age pigment’ and impact in human retinal pigment epithelium. Trans Ophthalmol Soc UK 103:416–421

    PubMed  Google Scholar 

  • Fishkin N, Sparrow JR, Allikmets R et al (2005) Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate. Proc Natl Acad Sci USA 102:7091–7096

    Article  PubMed  CAS  Google Scholar 

  • Handa JT, Verzijl N, Matsunaga H et al (1999) Increase in advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40:775–779

    PubMed  CAS  Google Scholar 

  • Haralampus-Grynaviski NM, Lamb LE, Clancy CMR et al (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci USA 100:3179–3184

    Article  PubMed  CAS  Google Scholar 

  • Jang YP, Matsuda H, Itagaki Y et al (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cells lipofuscin. J Biol Chem 280:39732–39739

    Article  PubMed  CAS  Google Scholar 

  • Katz ML, Drea CM, Eldred GE et al (1986) Influence of early photoreceptor degeneration on lipofuscin in the retinal pigment epithelium. Exp Eye Res 43:561–573

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Jockusch S, Itagaki Y et al (2008) Mechanisms involved in A2E oxidation. Exp Eye Res 86:975–982

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Fishkin N, Kong J et al (2004) The Rpe65 Leu450Met variant is associated with reduced levels of the RPE lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci USA 101:11668–11672

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Jang YP, Jockusch S et al (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci USA 104:19273–19278

    Article  PubMed  CAS  Google Scholar 

  • Kuny S, Gaillard F, Mema SC et al (2010) Inner Retina Remodeling in a Mouse Model of Stargardt-like Macular Dystrophy (STGD3). Invest Ophthalmol Vis Sci 51:2248–2262

    Article  PubMed  Google Scholar 

  • Maiti P, Kong J, Kim SR et al (2006) Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochem 45:852–860

    Article  CAS  Google Scholar 

  • Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97:7154–7159

    Article  PubMed  CAS  Google Scholar 

  • Mata NL, Tzekov RT, Liu X et al (2001) Delayed dark adaptation and lipofuscin accumulation in abcr+/− mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    PubMed  CAS  Google Scholar 

  • Ng KP, Gugiu BG, Renganathan K et al (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7:1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Parish CA, Hashimoto M, Nakanishi K et al (1998) Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 95:14609–14613

    Article  PubMed  CAS  Google Scholar 

  • Sakai N, Decatur J, Nakanishi K et al (1996) Ocular age pigment “A2E”: An unprecedented pyridinium bisretinoid. J Am Chem Soc 118:1559–1560

    Article  CAS  Google Scholar 

  • Sparrow JR (2007) RPE lipofuscin: formation, properties and relevance to retinal degeneration. In: Tombran-Tink J, Barnstable CJ (eds) Retinal Degenerations: Biology, Diagnostics and Therapeutics. Humana Press, Totowa, NJ

    Google Scholar 

  • Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal photobiology. Exp Eye Res 80:595–606

    Article  PubMed  CAS  Google Scholar 

  • Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    PubMed  CAS  Google Scholar 

  • Sparrow JR, Kim SR, Cuervo AM et al (2008) A2E, a pigment of RPE lipofuscin is generated from the precursor A2PE by a lysosomal enzyme activity. Adv Exp Med and Biol 613:393–398

    Article  CAS  Google Scholar 

  • Sparrow JR, Zhou J, Ben-Shabat S et al (2002) Involvement of oxidative mechanisms in blue light induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci 43:1222–1227

    PubMed  Google Scholar 

  • Sparrow JR, Wu Y, Nagasaki T et al (2010) Fundus autofluorescence and the bisretinoids of retina. Photochem Photobiol Sci 9:1480–1489

    Article  PubMed  CAS  Google Scholar 

  • Vasireddy V, Jablonski MM, Khan NW et al (2009) Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofusin. Exp Eye Res 89:905–912

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Mata NL, Azarian SM et al (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Nagasaki T, Sparrow JR (2010a) Photoreceptor cell degeneration in Abcr −/− mice. Adv Exp Med Biol 664:533–539

    Article  PubMed  Google Scholar 

  • Wu Y, Fishkin NE, Pande A et al (2009) Novel lipofuscin bisretinoids prominent in human retina and in a model of recessive Stargardt disease. J Biol Chem 284:20155–20166

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Yanase E, Feng X et al (2010b) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci USA 107:7275–7280

    Article  PubMed  CAS  Google Scholar 

  • Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Rad Biol Med 21:871–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant EY12951 (to JRS) and a grant from Research to Prevent Blindness to the Department of Ophthalmology. JRS is the recipient of a Research to Prevent Blindness Senior Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet R. Sparrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sparrow, J.R., Yamamoto, K. (2012). The Bisretinoids of RPE Lipofuscin: A Complex Mixture. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_97

Download citation

Publish with us

Policies and ethics