Trafficking of Presynaptic PMCA Signaling Complexes in Mouse Photoreceptors Requires Cav1.4 α1 Subunits

  • Wei Xing
  • Abram Akopian
  • David KrižajEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


The pore-forming Cav1.4 α1 subunit of the L-type Ca2+ channel plays a critical role in voltage-dependent Ca2+ influx and transmitter release at mammalian photoreceptor and bipolar synapses. Here we ask whether loss of Cav1.4 protein in the nob2 (“no b-wave”) Cacna1f mutation affects expression and localization of Ca2+ extrusion machinery at retinal ribbon synapses. Analysis of PMCA1, PMCA2, and pan-PMCA immunoreactivity in nob2 retinas showed pronounced mislocalization of presynaptic proteins in rod photoreceptors but not in bipolar neurons. PMCA1 transporters were displaced into juxtanuclear pockets across the outer nuclear layer (ONL) whereas little change was observed in localization of the high affinity Ca2+ extruder PMCA2. Our results therefore implicate Cav1.4 subunits in proper development and trafficking of signaling complexes to the photoreceptor synapse.


Calcium extrusion Nob2 Photoreceptor Cacna1f Voltage-operated PMCA PMCA1 Ribbon synapse Retina 



The work was supported by The National Institutes of Health (EY13870, P30EY014800, EY 12497), The Foundation Fighting Blindness, and the Moran TIGER award. The research was also supported by an unrestricted award from Research to Prevent Blindness to the Moran Eye Institute at the University of Utah.


  1. Aartsen WM, Arsanto JP, Chauvin JP et al (2009) PSD95β regulates plasma membrane Ca2+ pump localization at the photoreceptor synapse. Mol Cell Neurosci 41:156–165PubMedCrossRefGoogle Scholar
  2. Baehr W, Frederick JM (2009) Naturally occurring animal models with outer retina phenotypes. Vision Res 49:2636–2652PubMedCrossRefGoogle Scholar
  3. Bayley PR, Morgans CW (2007) Rod bipolar cells and horizontal cells form displaced synaptic contacts with rods in the outer nuclear layer of the nob2 retina. J Comp Neurol 500:286–298PubMedCrossRefGoogle Scholar
  4. Bech-Hansen NT, Naylor MJ, Maybaum TA et al (1998) Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267PubMedCrossRefGoogle Scholar
  5. Dick O, tom Dieck S, Altrock WD et al (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37:775–786PubMedCrossRefGoogle Scholar
  6. Doering CJ, Rehak R, Bonfield S et al (2008). Modified Ca(v)1.4 expression in the Cacna1f(nob2) mouse due to alternative splicing of an ETn inserted in exon 2. PLoS One 3:e2538Google Scholar
  7. Duncan JL, Yang H, Doan T et al (2006) Scotopic visual signaling in the mouse retina is modulated by high-affinity plasma membrane calcium extrusion. J Neurosci 26:7201–7211PubMedCrossRefGoogle Scholar
  8. Grossman GH, Pauer GJ, Narendra U et al (2010) Tubby-like protein 1 (tulp1) is required for normal photoreceptor synaptic development. Adv Exp Med Biol 664:89–96PubMedCrossRefGoogle Scholar
  9. Haeseleer F (2008) Interaction and colocalization of CaBP4 and Unc119 (MRG4) in photoreceptors. Invest Ophthalmol Vis Sci 49:2366–2375PubMedCrossRefGoogle Scholar
  10. Hemara-Wahanui A, Berjukow S, Hope CI et al (2005) A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Natl Acad Sci USA 102:7553–7558PubMedCrossRefGoogle Scholar
  11. Hoda JC, Zaghetto F, Singh A et al (2006) Effects of congenital stationary night blindness type 2 mutations R508Q and L1364H on Cav1.4 L-type Ca2+ channel function and expression. J Neurochem 96:1648–1658PubMedCrossRefGoogle Scholar
  12. Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237:1982–1992PubMedCrossRefGoogle Scholar
  13. Juhaszova M, Church P, Blaustein MP et al (2000) Location of calcium transporters at presynaptic terminals. Eur J Neurosci 12:839–846PubMedCrossRefGoogle Scholar
  14. Khimich D, Nouvian R, Pujol R et al (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889–894PubMedCrossRefGoogle Scholar
  15. Križaj D, Copenhagen DR (1998) Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21:249–256PubMedCrossRefGoogle Scholar
  16. Križaj D, Demarco SJ, Johnson J et al (2002) Cell-specific expression of plasma membrane ­calcium ATPase isoforms in retinal neurons. J Comp Neurol. 451:1–21PubMedCrossRefGoogle Scholar
  17. Križaj D, Huang H, Zou J et al (2009) Localization and function of TRPC1 channels in the mammalian retina. IOVS Abstr 5177a, Ft. Lauderdale, FLGoogle Scholar
  18. Lodha N, Bonfield S, Orton NC et al (2010) Congenital stationary night blindness in mice - a tale of two cacna1f mutants. Adv Exp Med Biol 664:549–558PubMedCrossRefGoogle Scholar
  19. Mansergh F, Orton NC, Vessey JP et al (2005) Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Genet 14:3035–3046PubMedCrossRefGoogle Scholar
  20. Midorikawa M, Tsukamoto Y, Berglund K et al (2007) Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells. Nat Neurosci 10:1268–1276PubMedCrossRefGoogle Scholar
  21. Miyake Y, Yagasaki K, Horiguchi M et al (1986) Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 104:1013–1020PubMedCrossRefGoogle Scholar
  22. Mizuno F, Barabas P, Rajadhyaksha AM, et al (2010) Internalization of Cav1.3 L-type Ca channels control glutamate-induced deregulation of Ca homeostasis in vertebrate retinal neurons. Journal of Physiology 588:953–966Google Scholar
  23. Peloquin JB, Rehak R, Doering CJ et al (2007) Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1007R, and R1049W. Neuroscience 150:335–345PubMedCrossRefGoogle Scholar
  24. Rentería RC, Strehler EE, Copenhagen DR et al (2005) Ontogeny of plasma membrane Ca2+ ATPase isoforms in the neural retina of the postnatal rat. Vis Neurosci. 22:263–274PubMedCrossRefGoogle Scholar
  25. Specht D, Wu SB, Turner P et al (2009) Effects of presynaptic mutations on a postsynaptic Cacna1s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Vis Sci 50:505–515PubMedCrossRefGoogle Scholar
  26. Szikra T, Barabas P, Bartoletti TM et al (2009) Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels. PLoS One 4:e6723PubMedCrossRefGoogle Scholar
  27. Strom TM, Nyakatura G, Apfelstedt-Sylla E et al (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 19:260–263PubMedCrossRefGoogle Scholar
  28. Yang J, Pawlyk B, Wen XH et al (2007) Mpp4 is required for proper localization of plasma membrane calcium ATPases and maintenance of calcium homeostasis at the rod photoreceptor ­synaptic terminals. Hum Mol Genet 16:1017–29PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual Sciences, Moran Eye CenterUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Department of Physiology and NeuroscienceNew York University Medical CenterNew YorkUSA
  3. 3.Department of PhysiologyUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations