Advertisement

Roles of Homeobox Genes in Retinal Ganglion Cell Differentiation and Axonal Guidance

  • Qi Zhang
  • David D. Eisenstat
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Retinal ganglion cells (RGCs) provide the only output of the retina, with their axons projecting to central nervous system targets. The combinatorial roles of homeodomain (HD) and basic helix-loop-helix (bHLH) transcription factors (TFs) determine RGC differentiation. The Class IV POU-domain proteins, BRN3a, BRN3b, and BRN3c, are all expressed in RGC. However, only Brn3b deletion leads to a major defect in RGC differentiation and axonal guidance. Dlx1/Dlx2 double knockout mice have 33% loss of late-born RGCs. Vax2 is restricted to ventral RGC and maintains ventral RGC axonal projections to their target, the medial rostral superior colliculus (SC). Isl1 defines a distinct but overlapping subpopulation of RGCs with Brn3b, whereas Isl2 specifies the contralateral projection of RGC axons.

Keywords

Retinal development Retinal ganglion cell Axonal guidance Transcription factor Homeobox gene 

References

  1. Badea TC, Cahill H, Ecker J et al (2009) Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61:852–864PubMedCrossRefGoogle Scholar
  2. Barbieri AM, Lupo G, Bulfone A et al (1999) A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proc Natl Acad Sci USA 96:1072910734PubMedCrossRefGoogle Scholar
  3. Bertuzzi S, Hindges R, Mui SH et al (1999) The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev 13:3092–3105PubMedCrossRefGoogle Scholar
  4. Cobos I, Borello U, Rubenstein JL (2007) Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54:873–888PubMedCrossRefGoogle Scholar
  5. de Melo J, Qiu X, Du G et al (2003) Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina. J Comp Neurol 461:187–204PubMedCrossRefGoogle Scholar
  6. de Melo J, Du G, Fonseca M et al (2005) Dlx1 and Dlx2 function is necessary for terminal differentiation and survival of late-born retinal ganglion cells in the developing mouse retina. Development 132:311–322PubMedCrossRefGoogle Scholar
  7. de Melo J, Zhou QP, Zhang Q et al (2008) Dlx2 homeobox gene transcriptional regulation of Trkb neurotrophin receptor expression during mouse retinal development. Nucleic Acids Res 36:872–884PubMedCrossRefGoogle Scholar
  8. Eisenstat DD, Liu JK, Mione M et al (1999) DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J Comp Neurol 414:217–237PubMedCrossRefGoogle Scholar
  9. Elshatory Y, Deng M, Xie X et al (2007) Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol 503:182–197PubMedCrossRefGoogle Scholar
  10. Erkman L, McEvilly RJ, Luo L et al (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381:603–606PubMedCrossRefGoogle Scholar
  11. Erkman L, Yates PA, McLaughlin T et al (2000) A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system. Neuron 28:779–792PubMedCrossRefGoogle Scholar
  12. Gan L, Xiang M, Zhou L et al (1996) POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci USA 93:3920–3925PubMedCrossRefGoogle Scholar
  13. Ghanem N, Jarinova O, Amores A et al (2003) Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res 13:533–543PubMedCrossRefGoogle Scholar
  14. Hallonet M, Hollemann T, Wehr R et al (1998) Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125:2599–2610PubMedGoogle Scholar
  15. Hamilton SP, Woo JM, Carlson EJ et al (2005) Analysis of four DLX homeobox genes in autistic probands. BMC Genet 6:52PubMedCrossRefGoogle Scholar
  16. Le TN, Du G, Fonseca M et al (2007) Dlx homeobox genes promote cortical interneuron migration from the basal forebrain by direct repression of the semaphorin receptor neuropilin-2. J Biol Chem 282:19071–19081PubMedCrossRefGoogle Scholar
  17. Liu W, Khare SL, Liang X et al (2000) All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 127:3237–3247PubMedGoogle Scholar
  18. Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 25:32–38PubMedCrossRefGoogle Scholar
  19. Mu X, Fu X, Beremand PD et al (2008) Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2. Proc Natl Acad Sci USA 105:6942–6947PubMedCrossRefGoogle Scholar
  20. Mui SH, Hindges R, O’Leary DD et al (2002) The homeodomain protein Vax2 patterns the dorsoventral and nasotemporal axes of the eye. Development 129:797–804PubMedGoogle Scholar
  21. Pak W, Hindges R, Lim YS et al (2004) Magnitude of binocular vision controlled by islet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding. Cell 119:567–578PubMedCrossRefGoogle Scholar
  22. Pan L, Yang Z, Feng L et al (2005) Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development 132:703–712PubMedCrossRefGoogle Scholar
  23. Pan L, Deng M, Xie X et al (2008) ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135:1981–1990PubMedCrossRefGoogle Scholar
  24. Poitras L, Ghanem N, Hatch G et al (2007) The proneural determinant MASH1 regulates forebrain Dlx1/2 expression through the I12b intergenic enhancer. Development 134:1755–1765PubMedCrossRefGoogle Scholar
  25. Quina LA, Pak W, Lanier J et al (2005) Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J Neurosci 25:11595–11604PubMedCrossRefGoogle Scholar
  26. Schulte D, Furukawa T, Peters MA et al (1999) Misexpression of the Emx-related homeobox genes cVax and mVax2 ventralizes the retina and perturbs the retinotectal map. Neuron 24:541–553PubMedCrossRefGoogle Scholar
  27. Shirasaki R, Pfaff SL (2002) Transcriptional codes and the control of neuronal identity. Annu Rev Neurosci 25:251–281PubMedCrossRefGoogle Scholar
  28. Xiang M, Gan L, Zhou L et al (1996) Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci USA 93:11950–11955PubMedCrossRefGoogle Scholar
  29. Xiang M, Zhou L, Macke JP et al (1995) The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15:4762–4785PubMedGoogle Scholar
  30. Xiang M, Gan L, Li D et al (1997) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA 94:9445–9450PubMedCrossRefGoogle Scholar
  31. Zhou QP, Le TN, Qiu X et al (2004) Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. Nucleic Acids Res 32:884–892PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
  2. 2.Manitoba Institute of Cell BiologyUniversity of ManitobaWinnipegCanada
  3. 3.Department of Pediatrics and Child HealthUniversity of ManitobaWinnipegCanada
  4. 4.Department of Biochemistry and Medical GeneticsUniversity of ManitobaWinnipegCanada
  5. 5.Department of OphthalmologyUniversity of ManitobaWinnipegCanada

Personalised recommendations