Skip to main content

Networks Modulating the Retinal Response to Injury: Insights from Microarrays, Expression Genetics, and Bioinformatics

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Defining the master regulators of retinal wound-healing response is the holy grail of transcriptome-wide analyses. To predict regulatory networks, we integrated transcriptome-wide changes with genetic linkage analysis and bioinformatics. Our studies yielded three complementary insights. First, groups of functionally related genes underlie the early, delayed, and sustained responses of wound healing. For example, transcriptional factor upregulation define the early response, whereas glial reactive markers and crystallin family upregulation define the sustained response. Second, expression of a subset of neural development, proliferation, and cell survival genes displayed genetic linkage to a locus that includes positional candidate genes Id2 and Lpin1. Third, mice with a nonfunctional Lipin 1 protein displayed increased ganglion cell survival and crystallin expression after optic nerve crush. The Crystallin Network represents one of the first modulatory mechanisms predicted from expression data of injured retina, expression genetics, and bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapova OA, Person E, Harbour JW (2010) Id2 deficiency promotes metastasis in a mouse model of ocular cancer. Clin Exp Metastasis 27:91–96

    Article  PubMed  CAS  Google Scholar 

  • Chesler EJ, Lu L, Shou S et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242

    Article  PubMed  CAS  Google Scholar 

  • Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76:145–153

    Article  PubMed  CAS  Google Scholar 

  • Inman D, Guth L, Steward O (2002) Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice. J Comp Neurol 451:225–235

    Article  PubMed  Google Scholar 

  • John SW (2005) Mechanistic insights into glaucoma provided by experimental genetics the cogan lecture. Invest Ophthalmol Vis Sci 46:2649–2661

    Article  PubMed  Google Scholar 

  • Kempermann G, Gage FH (2002) Genetic influence on phenotypic differentiation in adult hippocampal neurogenesis. Brain Res 134:1–12

    Article  CAS  Google Scholar 

  • Neumann PE, Collins RL (1991) Genetic dissection of susceptibility to audiogenic seizures in inbred mice. Proc Natl Acad Sci USA 88:5408–5412

    Article  PubMed  CAS  Google Scholar 

  • Peterfy M, Phan J, Xu P et al (2001) Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27:121–124

    Article  PubMed  CAS  Google Scholar 

  • Piatigorsky J (1998) Multifunctional lens crystallins and corneal enzymes. More than meets the eye. Annals N Y Acad Sci 842:7–15

    Article  CAS  Google Scholar 

  • Rogojina AT, Orr WE, Song BK et al (2003) Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Mol Vis 9:482–496

    PubMed  CAS  Google Scholar 

  • Schauwecker PE, Steward O (1997) Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA 94:4103–4108

    Article  PubMed  CAS  Google Scholar 

  • Steele MR, Inman DM, Calkins DJ et al (2006) Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 47:977–985

    Article  PubMed  Google Scholar 

  • Templeton JP, Nassr M, Vazquez-Chona F et al (2009) Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci 10:90

    Article  PubMed  Google Scholar 

  • Vazquez-Chona F, Song BK, Geisert EE, Jr. (2004) Temporal changes in gene expression after injury in the rat retina. Invest Ophthalmol Vis Sci 45:2737–2746

    Article  PubMed  Google Scholar 

  • Vazquez-Chona FR, Lu L, Williams RW et al (2007) Genomic loci modulating the retinal transcriptome in wound healing. Gene regulation and systems biology : 1:327–348

    Google Scholar 

  • Vazquez-Chona FR, Khan AN, Chan CK et al (2005) Genetic networks controlling retinal injury. Mol Vis [electronic resource] 11:958–970

    CAS  Google Scholar 

  • Willott JF, Erway LC (1998) Genetics of age-related hearing loss in mice. IV. Cochlear pathology and hearing loss in 25 BXD recombinant inbred mouse strains. Hearing Res 119:27–36

    Article  CAS  Google Scholar 

  • Yokota Y, Mori S (2002) Role of Id family proteins in growth control. J Cell Physiol 190:21–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

EEG received support from PHS grant RO1EY017841, NIH/NEI Core Grant 5P30 EY13080-04S1, and unrestricted grant from Research to Prevent Blindness. FVC received support from Daniel L. Gerwin Fellowship, Fight For Sight fellowships SF04031 and PD07010, International Retinal Research Foundation (Charles D. Kelman, MD Postdoctoral Scholar award), NIH Training Grant 5T32 HD07491, and Knights Templar Eye Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Félix R. Vázquez-Chona or Eldon E. Geisert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Vázquez-Chona, F.R., Geisert, E.E. (2012). Networks Modulating the Retinal Response to Injury: Insights from Microarrays, Expression Genetics, and Bioinformatics. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_82

Download citation

Publish with us

Policies and ethics