Advertisement

Exploring the Potential Role of the Oxidant-Activated Transcription Factor Aryl Hydrocarbon Receptor in the Pathogenesis of AMD

  • Goldis MalekEmail author
  • Mary Dwyer
  • Donald McDonnell
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Cigarette smoking is the most consistently shown risk factor associated with progression of all forms of age-related macular degeneration. The signaling pathways activated by cigarette smoke oxidants have not been fully elucidated. Herein, we review the effect of oxidant injury in retinal pigment epithelial cells at the subcellular level, introduce an oxidant-activated transcription factor called aryl hydrocarbon receptor, and discuss mechanisms by which this receptor may regulate the oxidative stress response in RPE cells and disease.

Keywords

Age-related macular degeneration Oxidative stress Retinal pigment epithelium Mitochondria Aryl hydrocarbon receptor 

Notes

Acknowledgments

This work was supported by a grant from the American Health Assistance Foundation (GM) and Research to Prevent Blindness.

References

  1. Alcazar O, Hawkridge AM, Collier TS et al (2009) Proteomic characterization of cell membrane blebs in human retinal pigment epithelium cells. Mol Cell ProteomicsGoogle Scholar
  2. Aly HA, Domenech O (2009) Cytotoxicity and mitochondrial dysfunction of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in isolated rat hepatocytes. Toxicol Lett 191:79–87PubMedCrossRefGoogle Scholar
  3. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293PubMedCrossRefGoogle Scholar
  4. Bird AC, Bressler NM, Bressler SB et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 39:367–374PubMedCrossRefGoogle Scholar
  5. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135–160PubMedCrossRefGoogle Scholar
  6. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230PubMedCrossRefGoogle Scholar
  7. Canter JA, Olson LM, Spencer K et al (2008) Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS ONE 3:e2091PubMedCrossRefGoogle Scholar
  8. Chomyn A, Attardi G (2003) MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 304:519–529PubMedCrossRefGoogle Scholar
  9. Ciulla TA, Rosenfeld PJ (2009) Antivascular endothelial growth factor therapy for neovascular age-related macular degeneration. Curr Opin Ophthalmol 20:158–165PubMedCrossRefGoogle Scholar
  10. Coleman HR, Chan CC, Ferris FL, 3 rd, Chew EY (2008) Age-related macular degeneration. Lancet 372:1835–1845PubMedCrossRefGoogle Scholar
  11. Dalton TP, Puga A, Shertzer HG (2002) Induction of cellular oxidative stress by aryl hydrocarbon receptor activation. Chem Biol Interact 141:77–95PubMedCrossRefGoogle Scholar
  12. Dewan A, Liu M, Hartman S et al (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314:989–992PubMedCrossRefGoogle Scholar
  13. Diani-Moore S, Papachristou F, Labitzke E, Rifkind AB (2006) Induction of CYP1A and cyp2-mediated arachidonic acid epoxygenation and suppression of 20-hydroxyeicosatetraenoic acid by imidazole derivatives including the aromatase inhibitor vorozole. Drug Metab Dispos 34:1376–1385PubMedCrossRefGoogle Scholar
  14. Edwards AO, Ritter R, 3 rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424PubMedCrossRefGoogle Scholar
  15. Espinosa-Heidmann DG, Suner IJ, Catanuto P et al (2006) Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest Ophthalmol Vis Sci 47:729–737PubMedCrossRefGoogle Scholar
  16. Feher J, Kovacs I, Artico M et al (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27:983–993PubMedCrossRefGoogle Scholar
  17. Fiotti N, Pedio M, Battaglia Parodi M et al (2005) MMP-9 microsatellite polymorphism and ­susceptibility to exudative form of age-related macular degeneration. Genet Med 7:272–277PubMedCrossRefGoogle Scholar
  18. Friedman DS, O’Colmain BJ, Munoz B et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572PubMedCrossRefGoogle Scholar
  19. Fritsche LG, Loenhardt T, Janssen A et al (2008) Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 40:892–896PubMedCrossRefGoogle Scholar
  20. Godley BF, Shamsi FA, Liang FQ et al (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066PubMedCrossRefGoogle Scholar
  21. Hageman GS et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232PubMedCrossRefGoogle Scholar
  22. Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421PubMedCrossRefGoogle Scholar
  23. Hankinson O (1995) The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35:307–340PubMedCrossRefGoogle Scholar
  24. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  25. Imamura Y, Noda S, Hashizume K et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103:11282–11287PubMedCrossRefGoogle Scholar
  26. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617PubMedCrossRefGoogle Scholar
  27. Jarrett S, Lin H, Godley B, Boulton M (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27:596–607PubMedCrossRefGoogle Scholar
  28. Jia L, Liu Z, Sun L et al (2007) Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci 48:339–348PubMedCrossRefGoogle Scholar
  29. Karchner SI, Jenny MJ, Tarrant AM et al (2009) The active form of human aryl hydrocarbon receptor (AHR) repressor lacks exon 8, and its Pro 185 and Ala 185 variants repress both AHR and hypoxia-inducible factor. Mol Cell Biol 29:3465–3477PubMedCrossRefGoogle Scholar
  30. Kasahara E, Lin LR, Ho YS, Reddy VN (2005) SOD2 protects against oxidation-induced apoptosis in mouse retinal pigment epithelium: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci 46:3426–3434PubMedCrossRefGoogle Scholar
  31. Klein R, Knudtson MD, Cruickshanks KJ, Klein BE (2008) Further observations on the association between smoking and the long-term incidence and progression of age-related macular degeneration: the Beaver Dam Eye Study. Arch Ophthalmol 126:115–121PubMedCrossRefGoogle Scholar
  32. Klein R, Klein BE, Knudtson MD et al (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 114:253–262PubMedCrossRefGoogle Scholar
  33. Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389PubMedCrossRefGoogle Scholar
  34. Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5:481–489PubMedCrossRefGoogle Scholar
  35. Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366:53–67PubMedCrossRefGoogle Scholar
  36. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76:397–403PubMedCrossRefGoogle Scholar
  37. Marin-Castano ME, Striker GE, Alcazar O, Catanuto P, Espinosa-Heidmann DG, Cousins SW (2006) Repetitive nonlethal oxidant injury to retinal pigment epithelium decreased extracellular matrix turnover in vitro and induced sub-RPE deposits in vivo. Invest Ophthalmol Vis Sci 47:4098–4112PubMedCrossRefGoogle Scholar
  38. Niki E, Minamisawa S, Oikawa M, Komuro E (1993) Membrane damage from lipid oxidation induced by free radicals and cigarette smoke. Ann N Y Acad Sci 686:29–37. discussion 37–28PubMedCrossRefGoogle Scholar
  39. Ohtake F, Baba A, Takada I et al (2007) Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446:562–566PubMedCrossRefGoogle Scholar
  40. Pollenz RS (2002) The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem Biol Interact 141:41–61PubMedCrossRefGoogle Scholar
  41. Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289PubMedCrossRefGoogle Scholar
  42. Pryor WA (1997) Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Perspect 105 Suppl 4:875–882PubMedCrossRefGoogle Scholar
  43. Rifkind AB (2006) CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 38:291–335PubMedCrossRefGoogle Scholar
  44. Robinson E, Grieve DJ (2009) Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 122:246–263PubMedCrossRefGoogle Scholar
  45. Ross RJ, Bojanowski CM, Wang JJ et al (2007) The LOC387715 polymorphism and age-related macular degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci 48:1128–1132PubMedCrossRefGoogle Scholar
  46. Schmidt S, Haines JL, Postel EA et al (2005) Joint effects of smoking history and APOE genotypes in age-related macular degeneration. Mol Vis 11:941–949PubMedGoogle Scholar
  47. Schmidt S et al (2002) A pooled case-control study of the apolipoprotein E (APOE) gene in age-related maculopathy. Ophthalmic Genet 23:209–223PubMedCrossRefGoogle Scholar
  48. Seddon JM, George S, Rosner B (2006) Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol 124:995–1001PubMedCrossRefGoogle Scholar
  49. Senft AP, Dalton TP, Nebert DW et al (2002) Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radic Biol Med 33:1268–1278PubMedCrossRefGoogle Scholar
  50. Wang K, Wan YJ (2008) Nuclear receptors and inflammatory diseases. Exp Biol Med (Maywood) 233:496–506CrossRefGoogle Scholar
  51. Wang Z, Yang H, Ramesh A et al (2009) Overexpression of Cu/Zn-superoxide dismutase and/or catalase accelerates benzo(a)pyrene detoxification by upregulation of the aryl hydrocarbon receptor in mouse endothelial cells. Free Radic Biol Med 47:1221–1229PubMedCrossRefGoogle Scholar
  52. Winston GW, Church DF, Cueto R, Pryor WA (1993) Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar. Arch Biochem Biophys 304:371–378PubMedCrossRefGoogle Scholar
  53. Yang Z, Camp NJ, Sun H et al (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314:992–993PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of OphthalmologyDuke UniversityDurhamUSA
  2. 2.Department of Pharmacology and Cancer BiologyDuke UniversityDurhamUSA

Personalised recommendations