Skip to main content

Modeling the Structural Consequences of BEST1 Missense Mutations

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Mutations in the bestrophin-1 gene (BEST1) are an important cause of inherited retinal disorders. Hitherto, over 100 unique allelic variants have been linked to the human BEST1 (hBEST1), and associated with disease phenotypes, broadly termed as bestrophinopathies. A spontaneous animal model recapitulating BEST1-related phenotypes, canine multifocal retinopathy (cmr), is caused by mutations in the canine gene ortholog (cBEST1). We have recently characterized molecular consequences of cmr, demonstrating defective protein trafficking as a result of G161D (cmr2) mutation. To further investigate the pathological effects of BEST1 missense mutations, canine and human peptide fragments derived from the protein sequence have been studied in silico as models for early events in the protein folding. The results showed that G161D as well as I201T substitutions cause severe conformational changes in the structure of bestrophin-1, suggesting protein misfolding as an underlying disease mechanism. The comparative modeling studies expand our insights into BEST1 pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett-Lovsey RM, Herbert AD, Sternberg MJ et al (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625

    Article  PubMed  CAS  Google Scholar 

  • Boon CJ, Klevering BJ, Leroy BP et al (2009) The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 28:187–205

    Article  PubMed  CAS  Google Scholar 

  • Casadio R, Fariselli P, Martelli PL (2003) In silico prediction of the structure of membrane proteins: is it feasible? Brief Bioinform 4:341–348

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPred II: An Improved Software For Membrane Protein Structure Predictions. Comput Appl Biosci 10:685–686

    PubMed  CAS  Google Scholar 

  • Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15:321–353

    Article  PubMed  CAS  Google Scholar 

  • Guziewicz KE, Zangerl B, Lindauer SJ et al (2007) Bestrophin gene mutations cause canine multifocal retinopathy: a novel animal model for best disease. Invest Ophthalmol Vis Sci 48: 1959–1967

    Article  PubMed  Google Scholar 

  • Guziewicz KE, Slavik J, Lindauer SJP et al (2011) Molecular consequences of BEST1 gene mutations in canine multifocal retinopathy predict functional implications for human bestrophinopathies. Invest Ophthalmol Vis Sci 52:4497–4505

    Google Scholar 

  • Hartzell HC, Qu Z, Yu K et al (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88:639–672

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa T, Boon-Chieng S, and Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  • Lotery AJ, Munier FL, Fishman GA et al (2000) Allelic variation in the VMD2 gene in best disease and age-related macular degeneration. Invest Ophthalmol Vis Sci 41:1291–1296

    PubMed  CAS  Google Scholar 

  • Marmorstein AD, Marmorstein LY, Rayborn M et al (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 97:12758–12763

    Article  PubMed  CAS  Google Scholar 

  • Milenkovic VM, Rivera A, Horling F et al (2007) Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane. J Biol Chem 282:1313–1321

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Cheng W, Cui Y et al (2009) Human disease-causing mutations disrupt an N-C- terminal interaction and channel function of bestrophin 1. J Biol Chem 284:16473–16481

    Article  PubMed  CAS  Google Scholar 

  • Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Tsunenari T, Yau KW et al (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99:4008–4013

    Article  PubMed  CAS  Google Scholar 

  • Tsunenari T, Sun H, Williams J et al (2003) Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 278:41114–41125

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Hartzell HC, Yu K (2010) Bestrophins and retinopathies. Pflugers Arch 460: 559–569

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Qu Z, Cui Y et al (2007) Chloride channel activity of bestrophin mutants associated with mild or late-onset macular degeneration. Invest Ophthalmol Vis Sci 48:4694–4705

    Article  PubMed  Google Scholar 

  • Zangerl B, Wickström K, Slavik J et al (2010) Assessment of canine BEST1 variations identifies new mutations and established an independent bestrophinopathy model (cmr3) in Lapponian Herders. Mol Vis 16:2791–2804

    Google Scholar 

Download references

Acknowledgments

This study was supported by The Foundation Fighting Blindness, NEI/NIH grant EY06855, EY17549, The Van Sloun Fund for Canine Genetic Research, Hope for Vision, and P30EY-001583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zangerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Guziewicz, K.E., Aguirre, G.D., Zangerl, B. (2012). Modeling the Structural Consequences of BEST1 Missense Mutations. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_78

Download citation

Publish with us

Policies and ethics