Advertisement

A Brief Account of Rho GTPases in Retinal Physiology and Pathophysiology

  • Severin Reinhard HeynenEmail author
  • Omolara O. Ogunshola
  • Christian Grimm
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Rho GTPases are a class of proteins with pleiotropic cellular functions. RAS-related C3 botulinum substrate 1 (RAC1), cell division cycle 42 homolog (CDC42), and ras homolog gene family member A (RHOA) are three classical small GTPases and their role in the modulation of the cellular cytoskeleton has been intensely studied. Cytoskeletal modulations are important processes in cellular movement and neuronal growth cone dynamics. Recent work has shown that Rho GTPases are also involved in other cellular processes including development and apoptosis. This chapter will give a short overview of the role of Rho GTPases in the retina.

Keywords

Rho GTPases Rac1 Cdc42 Retina Photoreceptor Development Cytoskeleton Degeneration 

Notes

Acknowledgments

I would like to thank members of the lab, especially Marijana Samardzija as well as Christian Grimm, for the continued help and support. This work was supported by a cooperative project grant from the Center of Integrative Human Physiology (ZIHP) of the University of Zurich and by the Swiss National Science Foundation (SNF #3100A0-117760).

References

  1. Aspenstrom P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377:327–337PubMedCrossRefGoogle Scholar
  2. Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10PubMedCrossRefGoogle Scholar
  3. Balasubramanian N, Slepak VZ (2003) Light-mediated activation of Rac-1 in photoreceptor outer segments. Curr Biol 13:1306–1310PubMedCrossRefGoogle Scholar
  4. Belmonte MA, Santos MF, Kihara AH et al (2006) Light-Induced photoreceptor degeneration in the mouse involves activation of the small GTPase Rac1. Invest Ophthalmol Vis Sci 47:1193–1200PubMedCrossRefGoogle Scholar
  5. Chaitin MH (1989) Immunogold localization of actin and opsin in rds mouse photoreceptors. Prog Clin Biol Res 314:265–274PubMedGoogle Scholar
  6. Chaitin MH, Burnside B (1989) Actin filament polarity at the site of rod outer segment disk morphogenesis. Invest Ophthalmol Vis Sci 30:2461–2469PubMedGoogle Scholar
  7. Chang HY, Ready DF (2000) Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 290:1978–1980PubMedCrossRefGoogle Scholar
  8. Chauhan BK, Disanza A, Choi SY et al (2009) Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development 136:3657–3667PubMedCrossRefGoogle Scholar
  9. Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17:255–296PubMedCrossRefGoogle Scholar
  10. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249PubMedGoogle Scholar
  11. Gao J, Cheon K, Nusinowitz S et al (2002) Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene. Proc Natl Acad Sci USA 99:5698–5703PubMedCrossRefGoogle Scholar
  12. Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19:1–49PubMedCrossRefGoogle Scholar
  13. Gray SM, Kelly S, Robles LJ (2008) Rho signaling mediates cytoskeletal re-arrangements in octopus photoreceptors. Am Malacol Bull 26:19–26PubMedCrossRefGoogle Scholar
  14. Hale IL, Fisher SK, Matsumoto B (1996) The actin network in the ciliary stalk of photoreceptors functions in the generation of new outer segment discs. J Comp Neurol 376:128–142PubMedCrossRefGoogle Scholar
  15. Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355:965–970PubMedCrossRefGoogle Scholar
  16. Haruta M, Bush RA, Kjellstrom S et al (2009) Depleting Rac1 in mouse rod photoreceptors protects them from photo-oxidative stress without affecting their structure or function. Proc Natl Acad Sci USA 106:9397–9402PubMedCrossRefGoogle Scholar
  17. Heynen SR, Tanimoto N, Joly S, Seeliger MW, Samardzija M, Grimm C. Retinal degeneration modulates intracellular localization of CDC42 in photoreceptors, Molecular Vision in pressPubMedCrossRefGoogle Scholar
  18. Jaffer ZM, Chernoff J (2002) p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 34:713–717PubMedCrossRefGoogle Scholar
  19. Liu Q, Zuo J, Pierce EA (2004) The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci 24:6427–6436PubMedCrossRefGoogle Scholar
  20. Liu Q, Lyubarsky A, Skalet JH et al (2003) RP1 is required for the correct stacking of outer segment discs. Invest Ophthalmol Vis Sci 44:4171–4183PubMedCrossRefGoogle Scholar
  21. Liu Q, Zhou J, Daiger SP et al (2002) Identification and subcellular localization of the RP1 protein in human and mouse photoreceptors. Invest Ophthalmol Vis Sci 43:22–32PubMedGoogle Scholar
  22. Malartre M, Ayaz D, Amador FF et al (2010) The guanine exchange factor vav controls axon growth and guidance during Drosophila development. J Neurosci 30:2257–2267PubMedCrossRefGoogle Scholar
  23. Menzel N, Schneeberger D, Raabe T (2007) The Drosophila p21 activated kinase Mbt regulates the actin cytoskeleton and adherens junctions to control photoreceptor cell morphogenesis. Mech Dev 124:78–90PubMedCrossRefGoogle Scholar
  24. Miller AM, Ramirez T, Zuniga FI et al (2005) Rho GTPases regulate rhabdom morphology in octopus photoreceptors. Vis Neurosci 22:295–304PubMedCrossRefGoogle Scholar
  25. Mitchell DC, Bryan BA, Liu JP et al (2007) Developmental expression of three small GTPases in the mouse eye. Mol Vis 13:1144–1153PubMedGoogle Scholar
  26. Paduch M, Jelen F, Otlewski J (2001) Structure of small G proteins and their regulators. Acta Biochim Pol 48:829–850PubMedGoogle Scholar
  27. Portera-Cailliau C, Sung CH, Nathans J et al (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA 91:974–978PubMedCrossRefGoogle Scholar
  28. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32PubMedCrossRefGoogle Scholar
  29. Rembold M, Loosli F, Adams RJ et al (2006) Individual cell migration serves as the driving force for optic vesicle evagination. Science 313:1130–1134PubMedCrossRefGoogle Scholar
  30. Robles LJ, Camacho JL, Torres SC et al (1995) Retinoid cycling proteins redistribute in light-/dark-adapted octopus retinas. J Comp Neurol 358:605–614PubMedCrossRefGoogle Scholar
  31. Ruchhoeft ML, Ohnuma S, McNeill L et al (1999) The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J Neurosci 19:8454–8463PubMedGoogle Scholar
  32. Schneeberger D, Raabe T (2003) Mbt, a Drosophila PAK protein, combines with Cdc42 to regulate photoreceptor cell morphogenesis. Development 130:427–437PubMedCrossRefGoogle Scholar
  33. Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190:501–508PubMedCrossRefGoogle Scholar
  34. Tahinci E, Symes K (2003) Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation. Dev Biol 259:318–335PubMedCrossRefGoogle Scholar
  35. Teramoto H, Coso OA, Miyata H et al (1996) Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 271:27225–27228PubMedCrossRefGoogle Scholar
  36. Torres SC, Camacho JL, Matsumoto B et al (1997) Light-/dark-induced changes in rhabdom structure in the retina of Octopus bimaculoides. Cell Tissue Res 290:167–174PubMedCrossRefGoogle Scholar
  37. Wells CM, Jones GE (2010) The emerging importance of group II PAKs. Biochem J 425:465–473PubMedCrossRefGoogle Scholar
  38. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312PubMedCrossRefGoogle Scholar
  39. Wieland T, Ulibarri I, Gierschik P et al (1990) Interaction of recombinant rho A GTP-binding proteins with photoexcited rhodopsin. FEBS Lett 274:111–114PubMedCrossRefGoogle Scholar
  40. Williams DR (1988) Topography of the foveal cone mosaic in the living human eye. Vision Res 28:433–454PubMedCrossRefGoogle Scholar
  41. Yoshimura T, Arimura N, Kaibuchi K (2006) Molecular mechanisms of axon specification and neuronal disorders. Ann N Y Acad Sci 1086:116–125PubMedCrossRefGoogle Scholar
  42. Yuan XB, Jin M, Xu X et al (2003) Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 5:38–45PubMedCrossRefGoogle Scholar
  43. Zhao ZS, Manser E (2005) PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. Biochem J 386:201–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Severin Reinhard Heynen
    • 1
    • 2
    Email author
  • Omolara O. Ogunshola
    • 2
    • 3
  • Christian Grimm
    • 1
    • 2
  1. 1.Laboratory of Retinal Cell Biology, Department of OphthalmologyUniversity of ZurichSchlierenSwitzerland
  2. 2.Zurich Center for Integrative Human PhysiologyZurichSwitzerland
  3. 3.Institute of Veterinary PhysiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations