Advertisement

Endoplasmic Reticulum-Associated Degradation (ERAD) of Misfolded Glycoproteins and Mutant P23H Rhodopsin in Photoreceptor Cells

  • Heike Kroeger
  • Wei-Chieh Chiang
  • Jonathan H. LinEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Membrane proteins, such as rhodopsin, often undergo N-linked glycosylation after translocation into the endoplasmic reticulum (ER). N-linked glycans are markers for correct protein folding, protein quality control, transport, and recognition by the ER-associated degradation (ERAD) machinery. The ER contains many resident proteins that promote correct folding of newly synthesized proteins and prevent inappropriate aggregation of protein-folding intermediates. The quality control mechanisms of the ER guarantee that only correctly folded proteins exit the ER and progress through the secretory pathway. Here, we review the ERAD pathway for glycoproteins and discuss recent reports linking ERAD to the development of retinitis pigmentosa arising from misfolded rhodopsin.

Keywords

Misfolded proteins ERAD ER Quality control P23H rhodopsin Photoreceptor cells 

Notes

Acknowledgments

We thank M. LaVail for helpful suggestions on this manuscript and grant support from the Hope for Vision Foundation, the Karl Kirchgessner Foundation, and the NIH (EY018313, EY020846). W.C. Chiang received postdoctoral support from the Fight-for-Sight Foundation.

References

  1. Aebi M, Bernasconi R, Clerc S et al (2009) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82PubMedCrossRefGoogle Scholar
  2. Anukanth A, Khorana HG (1994) Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain. J Biol Chem 269:19738–19744PubMedGoogle Scholar
  3. Bays NW, Wilhovsky SK, Goradia A et al (2001) HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 12:4114–4128PubMedGoogle Scholar
  4. Bernasconi R, Galli C, Calanca V et al (2010) Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. J Cell Biol 188:223–235PubMedCrossRefGoogle Scholar
  5. Blom D, Hirsch C, Stern P et al (2004) A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J 23:650–658PubMedCrossRefGoogle Scholar
  6. Blond-Elguindi S, Cwirla SE, Dower WJ et al (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728PubMedCrossRefGoogle Scholar
  7. Braun S, Matuschewski K, Rape M et al (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21:615–621PubMedCrossRefGoogle Scholar
  8. Christianson JC, Shaler TA, Tyler RE et al (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282PubMedCrossRefGoogle Scholar
  9. Ellgaard L (2004) Catalysis of disulphide bond formation in the endoplasmic reticulum. Biochem Soc Trans 32:663–667PubMedCrossRefGoogle Scholar
  10. Fagioli C, Sitia R (2001) Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J Biol Chem 276:12885–12892PubMedCrossRefGoogle Scholar
  11. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513PubMedCrossRefGoogle Scholar
  12. Griciuc A, Aron L, Piccoli G et al (2010a) Clearance of Rhodopsin (P23H) aggregates requires the ERAD effector VCP. Biochim Biophys Acta 1803:424–434PubMedCrossRefGoogle Scholar
  13. Griciuc A, Aron L, Roux MJ et al (2010b) Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 6Google Scholar
  14. Groll M, Ditzel L, Lowe J et al (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471PubMedCrossRefGoogle Scholar
  15. Hendershot LM, Wei JY, Gaut JR et al (1995) In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol Biol Cell 6:283–296PubMedGoogle Scholar
  16. Hirao K, Natsuka Y, Tamura T et al (2006) EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J Biol Chem 281:9650–9658PubMedCrossRefGoogle Scholar
  17. Hosokawa N, Kamiya Y, Kato K (2010a) The role of MRH domain-containing lectins in ERAD. Glycobiology 20:651–660PubMedCrossRefGoogle Scholar
  18. Hosokawa N, Wada I, Nagasawa K et al (2008) Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem 283:20914–20924PubMedCrossRefGoogle Scholar
  19. Hosokawa N, Tremblay LO, Sleno B et al (2010b) EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology 20:567–575PubMedCrossRefGoogle Scholar
  20. Illing ME, Rajan RS, Bence NF et al (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277:34150–34160PubMedCrossRefGoogle Scholar
  21. Jarosch E, Taxis C, Volkwein C et al (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139PubMedCrossRefGoogle Scholar
  22. Kang MJ, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci USA 106:17043–17048PubMedCrossRefGoogle Scholar
  23. Kosmaoglou M, Kanuga N, Aguila M et al (2009) A dual role for EDEM1 in the processing of rhodopsin. J Cell Sci 122:4465–4472PubMedCrossRefGoogle Scholar
  24. Lilley BN, Ploegh HL (2005) Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci USA 102:14296–14301PubMedCrossRefGoogle Scholar
  25. Lippincott-Schwartz J, Bonifacino JS, Yuan LC et al (1988) Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54:209–220PubMedCrossRefGoogle Scholar
  26. Mast SW, Diekman K, Karaveg K et al (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15:421–436PubMedCrossRefGoogle Scholar
  27. Misaghi S, Pacold ME, Blom D et al (2004) Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem Biol 11:1677–1687PubMedCrossRefGoogle Scholar
  28. Molinari M, Calanca V, Galli C et al (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400PubMedCrossRefGoogle Scholar
  29. Mueller B, Klemm EJ, Spooner E et al (2008) SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci USA 105:12325–12330PubMedCrossRefGoogle Scholar
  30. Noorwez SM, Sama RR, Kaushal S (2009) Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal. J Biol Chem 284:33333–33342PubMedCrossRefGoogle Scholar
  31. Oda Y, Hosokawa N, Wada I et al (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394–1397PubMedCrossRefGoogle Scholar
  32. Oliver JD, Roderick HL, Llewellyn DH et al (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 10:2573–2582PubMedGoogle Scholar
  33. Peterson JR, Ora A, Van PN et al (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 6:1173–1184PubMedGoogle Scholar
  34. Richly H, Rape M, Braun S et al (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84PubMedCrossRefGoogle Scholar
  35. Saliba RS, Munro PM, Luthert PJ et al (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918PubMedGoogle Scholar
  36. Sung CH, Schneider BG, Agarwal N et al (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88:8840–8844PubMedCrossRefGoogle Scholar
  37. Suzuki T, Park H, Kwofie MA et al (2001) Rad23 provides a link between the Png1 deglycosylating enzyme and the 26S proteasome in yeast. J Biol Chem 276:21601–21607PubMedCrossRefGoogle Scholar
  38. Trombetta ES, Helenius A (2000) Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J Cell Biol 148:1123–1129PubMedCrossRefGoogle Scholar
  39. Trombetta ES, Parodi AJ (2003) Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19:649–676PubMedCrossRefGoogle Scholar
  40. Ushioda R, Hoseki J, Araki K et al (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572PubMedCrossRefGoogle Scholar
  41. Wada I, Rindress D, Cameron PH et al (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266:19599–19610PubMedGoogle Scholar
  42. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178PubMedCrossRefGoogle Scholar
  43. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656PubMedCrossRefGoogle Scholar
  44. Zhang X, Shaw A, Bates PA et al (2000) Structure of the AAA ATPase p97. Mol Cell 6:1473–1484PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Heike Kroeger
    • 1
  • Wei-Chieh Chiang
    • 1
  • Jonathan H. Lin
    • 1
    Email author
  1. 1.Department of PathologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations