Advertisement

Ceramide Signaling in Retinal Degeneration

  • Hui Chen
  • Julie-Thu A. Tran
  • Richard S. Brush
  • Anisse Saadi
  • Abul K. Rahman
  • Man Yu
  • Douglas Yasumura
  • Michael T. Matthes
  • Kelly Ahern
  • Haidong Yang
  • Matthew M. LaVail
  • Md Nawajes A. MandalEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Retinal degenerations (RD) are a complex heterogeneous group of diseases in which retinal photoreceptors and the supporting retinal pigment epithelial cells die irreversibly, causing visual loss for millions of people. Mutations on more than 150 genes have been discovered for RD and there are many forms that possess complex etiology involving more than one gene and environmental effect. For years, many have searched for some common intracellular second messenger for these many forms of cell death which could be targeted for therapy. Ceramide is a novel cellular second messenger which signals for apoptosis. Several lines of evidence suggest an integral role of ceramide in photoreceptor apoptosis and cell death. Understanding their role in the pathogenic pathways of retinal degenerative diseases is important for development of targeted therapeutics.

Keywords

Ceramide Retinal degeneration Apoptosis Photoreceptor RPE 

Notes

Acknowledgments

Our study is supported by NIH grants RR17703 and EY12190, Knight’s Templar Eye Foundation, and Research to Prevent Blindness.

References

  1. Abrahan CE, Miranda GE, Agnolazza DL et al (2010) Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors. Invest Ophthalmol Vis Sci 51:1171–1180PubMedCrossRefGoogle Scholar
  2. Acharya JK, Dasgupta U, Rawat SS et al (2008) Cell-nonautonomous function of ceramidase in photoreceptor homeostasis. Neuron 57:69–79PubMedCrossRefGoogle Scholar
  3. Acharya U, Mowen MB, Nagashima K et al (2004) Ceramidase expression facilitates membrane turnover and endocytosis of rhodopsin in photoreceptors. Proc Natl Acad Sci USA 101:1922–1926PubMedCrossRefGoogle Scholar
  4. Acharya U, Patel S, Koundakjian E et al (2003) Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science 299:1740–1743PubMedCrossRefGoogle Scholar
  5. Allikmets R (2004) Leber congenital amaurosis: a genetic paradigm. Ophthalmic Genet 25:67–79PubMedCrossRefGoogle Scholar
  6. Auslender N, Sharon D, Abbasi AH et al (2007) A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. Invest Ophthalmol Vis Sci 48:5431–5438PubMedCrossRefGoogle Scholar
  7. Barak A, Morse LS, Goldkorn T (2001) Ceramide: a potential mediator of apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:247–254PubMedGoogle Scholar
  8. Barak A, Goldkorn T, Morse LS (2005) Laser induces apoptosis and ceramide production in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 46:2587–2591PubMedCrossRefGoogle Scholar
  9. Brownstein S, Meagher-Villemure K, Polomeno RC et al (1978) Optic nerve in globoid leukodystrophy (Krabbe’s disease). Ultrastructural changes. Arch Ophthalmol 96:864–870PubMedCrossRefGoogle Scholar
  10. Carella G (2003) Introduction to apoptosis in ophthalmology. Eur J Ophthalmol 13 Suppl 3:S5–10PubMedGoogle Scholar
  11. Chang GQ, Hao Y, Wong F (1993) Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11:595–605PubMedCrossRefGoogle Scholar
  12. Dasgupta U, Bamba T, Chiantia S et al (2009) Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc Natl Acad Sci USA 106:20063–20068PubMedGoogle Scholar
  13. Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5:777–782PubMedCrossRefGoogle Scholar
  14. German OL, Miranda GE, Abrahan CE et al (2006) Ceramide is a mediator of apoptosis in retina photoreceptors. Invest Ophthalmol Vis Sci 47:1658–1668PubMedCrossRefGoogle Scholar
  15. Glazer LC, Dryja TP (2002) Understanding the etiology of Stargardt’s disease. Ophthalmol Clin North Am 15:93–100, viiiGoogle Scholar
  16. Haddad S, Chen CA, Santangelo SL et al (2006) The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol 51:316–363PubMedCrossRefGoogle Scholar
  17. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150PubMedCrossRefGoogle Scholar
  18. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809PubMedCrossRefGoogle Scholar
  19. Huwiler A, Kolter T, Pfeilschifter J et al (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485:63–99PubMedGoogle Scholar
  20. Kannan R, Jin M, Gamulescu MA et al (2004) Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor. Free Radic Biol Med 37:166–175PubMedCrossRefGoogle Scholar
  21. Martin RE, Elliott MH, Brush RS et al (2005) Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest Ophthalmol Vis Sci 46:1147–1154PubMedCrossRefGoogle Scholar
  22. Obeid LM, Linardic CM, Karolak LA et al (1993) Programmed cell death induced by ceramide. Science 259:1769–1771PubMedCrossRefGoogle Scholar
  23. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560PubMedCrossRefGoogle Scholar
  24. Portera-Cailliau C, Sung CH, Nathans J et al (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA 91:974–978PubMedCrossRefGoogle Scholar
  25. Puranam K, Qian WH, Nikbakht K et al (1997) Upregulation of Bcl-2 and elevation of ceramide in Batten disease. Neuropediatrics 28:37–41PubMedCrossRefGoogle Scholar
  26. Ranty ML, Carpentier S, Cournot M et al (2009) Ceramide production associated with retinal apoptosis after retinal detachment. Graefes Arch Clin Exp Ophthalmol 247:215–224PubMedCrossRefGoogle Scholar
  27. Robb RM, Kuwabara T (1973) The ocular pathology of type A Niemann-Pick disease. A light and electron microscopic study. Invest Ophthalmol 12:366–377PubMedGoogle Scholar
  28. Rotstein NP, Miranda GE, Abrahan CE et al (2010) Regulating survival and development in the retina: key roles for simple sphingolipids. J Lipid Res 51:1247–1262PubMedCrossRefGoogle Scholar
  29. Sango K, Yamanaka S, Ajiki K et al (2008) Involvement of retinal neurons and pigment epithelial cells in a murine model of sandhoff disease. Ophthalmic Res 40:241–248PubMedCrossRefGoogle Scholar
  30. Sanvicens N, Cotter TG (2006) Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem 98:1432–1444PubMedCrossRefGoogle Scholar
  31. Seidova SF, Kotliar K, Foerger F et al (2009) Functional retinal changes in Gaucher disease. Doc Ophthalmol 118:151–154PubMedCrossRefGoogle Scholar
  32. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407PubMedCrossRefGoogle Scholar
  33. Strettoi E, Gargini C, Novelli E et al (2010) Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 107:18706–18711PubMedCrossRefGoogle Scholar
  34. Tsui-Pierchala BA, Encinas M, Milbrandt J et al (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417PubMedCrossRefGoogle Scholar
  35. Tuson M, Marfany G, Gonzalez-Duarte R (2004) Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 74:128–138PubMedCrossRefGoogle Scholar
  36. Xiao Q, Yu K, Cui YY et al HC (2009) Dysregulation of human bestrophin-1 by ceramide-induced dephosphorylation. J Physiol 587:4379–4391PubMedCrossRefGoogle Scholar
  37. Zarbin MA, Green WR, Moser HW et al (1985) Farber’s disease. Light and electron microscopic study of the eye. Arch Ophthalmol 103:73–80PubMedCrossRefGoogle Scholar
  38. Zarbin MA, Green WR, Moser AB et al (1988) Increased levels of ceramide in the retina of a patient with Farber’s disease. Arch Ophthalmol 106:1163PubMedCrossRefGoogle Scholar
  39. Zhu D, Sreekumar PG, Hinton DR et al (2010) Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration. Vision Res 50:643–651PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hui Chen
    • 1
    • 2
    • 3
  • Julie-Thu A. Tran
    • 1
    • 2
  • Richard S. Brush
    • 1
    • 2
  • Anisse Saadi
    • 1
    • 2
  • Abul K. Rahman
    • 1
    • 2
  • Man Yu
    • 1
    • 2
  • Douglas Yasumura
    • 4
  • Michael T. Matthes
    • 4
  • Kelly Ahern
    • 4
  • Haidong Yang
    • 4
  • Matthew M. LaVail
    • 4
  • Md Nawajes A. Mandal
    • 1
    • 2
    Email author
  1. 1.Department of OphthalmologyOUHSCOklahoma CityUSA
  2. 2.Dean A. McGee Eye InstituteOklahoma CityUSA
  3. 3.Ophthalmology Department of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s HospitalChengdu CityChina
  4. 4.Beckman Vision CenterUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations