Advertisement

Calpain and Photoreceptor Apoptosis

  • Anh T. H. Nguyen
  • Matthew Campbell
  • Paul F. Kenna
  • Anna-Sophia Kiang
  • Lawrence Tam
  • Marian M. Humphries
  • Peter Humphries
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Photoreceptor apoptosis is present in various retinopathies such as retinitis pigmentosa and glaucoma where caspases are generally considered to be the main executioners of apoptosis in various tissues. However, accumulating evidence suggests apoptosis could occur in a caspase-independent fashion. In this view, many studies have shown that calpain activation is associated with photoreceptor apoptosis in various animal and light-induced retinal degeneration models. Thus, calpain could be a potential target for treatment and may promote cell survival in cases where caspase inhibition has failed. Herein, we review current thinking on this topic and also present data showing protection of photoreceptors to apoptosis by systemic delivery of a calpain inhibitor in a light-induced model of retinal degeneration by modulation of the inner blood retina barrier (iBRB).

Keywords

Calpain Photoreceptor apoptosis Light-induced retinal damage Blood retina barrier Barrier modulation Claudin-5 Retinitis pigmentosa Age-related macular degeneration 

Notes

Acknowledgements

We thank Caroline Woods, David Flynn and Rebecca Robertson for animal husbandry. The Ocular Genetics Unit at TCD is supported by Science Foundation Ireland, The Wellcome Trust, European Vision Institute, EVI-Genoret Grant LSHG-CT-2005-512036, Fighting Blindness Ireland and Enterprise Ireland.

References

  1. Azarian SM, Schlamp CL, Williams DS (1993) Characterization of calpain II in the retina and photoreceptor outer segments. J Cell Sci 105 ( Pt 3):787–798PubMedGoogle Scholar
  2. Azuma M, Shearer TR (2008) The role of calcium-activated protease calpain in experimental retinal pathology. Surv Ophthalmol 53:150–163PubMedCrossRefGoogle Scholar
  3. Bizat N, Galas MC, Jacquard C et al (2005) Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain. Neuropharmacology 49:695–702PubMedCrossRefGoogle Scholar
  4. Campbell M, Kiang AS, Kenna PF et al (2008) RNAi-mediated reversible opening of the blood-brain barrier. J Gene Med 10:930–947PubMedCrossRefGoogle Scholar
  5. Campbell M, Nguyen AT, Kiang AS et al (2009) An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci USA 106:17817–17822PubMedCrossRefGoogle Scholar
  6. Donovan M, Cotter TG (2002) Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell Death Differ 9:1220–1231PubMedCrossRefGoogle Scholar
  7. Doonan F, Donovan M, Cotter TG (2003) Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 23:5723–5731PubMedGoogle Scholar
  8. Doonan F, Donovan M, Cotter TG (2005) Activation of multiple pathways during photoreceptor apoptosis in the rd mouse. Invest Ophthalmol Vis Sci 46:3530–3538PubMedCrossRefGoogle Scholar
  9. Glading A, Chang P, Lauffenburger DA et al (2000) Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J Biol Chem 275:2390–2398PubMedCrossRefGoogle Scholar
  10. Goll DE, Thompson VF, Li H et al (2003) The calpain system. Physiol Rev 83:731–801PubMedGoogle Scholar
  11. Huang W, Fileta J, Rawe I et al (2010) Calpain activation in experimental glaucoma. Invest Ophthalmol Vis Sci 51:3049–3054PubMedCrossRefGoogle Scholar
  12. Kawashima S, Hayashi M, Saito Y et al (1988) Tissue distribution of calcium-activated neutral proteinases in rat. Biochim Biophys Acta 965:130–135PubMedCrossRefGoogle Scholar
  13. Kulkarni S, Saido TC, Suzuki K et al (1999) Calpain mediates integrin-induced signaling at a point upstream of Rho family members. J Biol Chem 274:21265–21275PubMedCrossRefGoogle Scholar
  14. Lee MS, Kwon YT, Li M et al (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364PubMedCrossRefGoogle Scholar
  15. Li H, Thompson VF, Goll DE (2004) Effects of autolysis on properties of mu- and m-calpain. Biochim Biophys Acta 1691:91–103PubMedCrossRefGoogle Scholar
  16. McGinnis KM, Gnegy ME, Park YH et al (1999) Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 263:94–99PubMedCrossRefGoogle Scholar
  17. Melloni E, Averna M, Stifanese R et al (2006) Association of calpastatin with inactive calpain: a novel mechanism to control the activation of the protease? J Biol Chem 281:24945–24954PubMedCrossRefGoogle Scholar
  18. Mizukoshi S, Nakazawa M, Sato K et al (2010) Activation of mitochondrial calpain and release of apoptosis-inducing factor from mitochondria in RCS rat retinal degeneration. Exp Eye Res 91:353–361PubMedCrossRefGoogle Scholar
  19. Montezuma SR, Sobrin L, Seddon JM (2007) Review of genetics in age related macular degeneration. Semin Ophthalmol 22:229–240PubMedCrossRefGoogle Scholar
  20. Nath R, Raser KJ, Stafford D et al (1996) Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319(Pt 3):683–690PubMedGoogle Scholar
  21. Nixon RA (2003) The calpains in aging and aging-related diseases. Ageing Res Rev 2:407–418PubMedCrossRefGoogle Scholar
  22. Paquet-Durand F, Johnson L, Ekstrom P (2007) Calpain activity in retinal degeneration. J Neurosci Res 85:693–702PubMedCrossRefGoogle Scholar
  23. Paquet-Durand F, Sanges D, McCall J et al (2010) Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem 115:930–940PubMedCrossRefGoogle Scholar
  24. Perche O, Doly M, Ranchon-Cole I (2009) Calpains are activated by light but their inhibition has no neuroprotective effect against light-damage. Exp Eye Res 89:989–994PubMedCrossRefGoogle Scholar
  25. Persson H, Kawashima S, Karlsson JO (1993) Immunohistochemical localization of calpains and calpastatin in the rabbit eye. Brain Res 611:272–278PubMedCrossRefGoogle Scholar
  26. Potter DA, Tirnauer JS, Janssen R et al (1998) Calpain regulates actin remodeling during cell spreading. J Cell Biol 141:647–662PubMedCrossRefGoogle Scholar
  27. Rock MT, Dix AR, Brooks WH et al (2000) Beta1 integrin-mediated T cell adhesion and cell spreading are regulated by calpain. Exp Cell Res 261:260–270PubMedCrossRefGoogle Scholar
  28. Sakamoto YR, Nakajima TR, Fukiage CR et al (2000) Involvement of calpain isoforms in ischemia-reperfusion injury in rat retina. Curr Eye Res 21:571–580PubMedGoogle Scholar
  29. Shimazawa M, Suemori S, Inokuchi Y et al (2010) A novel calpain inhibitor, ((1S)-1-((((1S)-1-Benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbony l)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), reduces murine retinal cell death in vitro and in vivo. J Pharmacol Exp Ther 332:380–387PubMedCrossRefGoogle Scholar
  30. Suzuki K, Hata S, Kawabata Y et al (2004) Structure, activation, and biology of calpain. Diabetes 53 Suppl 1:S12–18PubMedCrossRefGoogle Scholar
  31. Suzuki K, Imajoh S, Emori Y et al (1987) Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Lett 220:271–277PubMedCrossRefGoogle Scholar
  32. Tan Y, Dourdin N, Wu C et al (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024PubMedCrossRefGoogle Scholar
  33. Wenzel A, Grimm C, Samardzija M et al (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24:275–306PubMedCrossRefGoogle Scholar
  34. Wood DE, Thomas A, Devi LA et al (1998) Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17:1069–1078PubMedCrossRefGoogle Scholar
  35. Wu J, Gorman A, Zhou X et al (2002) Involvement of caspase-3 in photoreceptor cell apoptosis induced by in vivo blue light exposure. Invest Ophthalmol Vis Sci 43:3349–3354PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anh T. H. Nguyen
    • 1
  • Matthew Campbell
    • 1
  • Paul F. Kenna
    • 1
  • Anna-Sophia Kiang
    • 1
  • Lawrence Tam
    • 1
  • Marian M. Humphries
    • 1
  • Peter Humphries
    • 1
  1. 1.The Ocular Genetics Unit, Smurfit Institute of GeneticsTrinity College DublinDublinIreland

Personalised recommendations