Transcriptome Analyses to Investigate the Pathogenesis of RNA Splicing Factor Retinitis Pigmentosa

  • Michael H. Farkas
  • Greg R. Grant
  • Eric A. PierceEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


RNA-splicing factor retinitis pigmentosa (RP) is caused by mutations in components of the spliceosome. RP is an inherited blinding disorder characterized by late-onset retinal degeneration. Currently, mutations in five genes that encode components of the spliceosome have been identified to cause autosomal dominant RP. These are the pre-mRNA processing factors 3, 8, and 31 (PRPF3, 8, and 31), RP9, and SNRNP200. It is unknown how mutations in these ubiquitously expressed genes lead to retina-specific disease. It is hypothesized that mutations in these genes lead to aberrant splicing of pre-mRNA, which in turn causes retinal degeneration. To fully investigate this hypothesis requires the ability to accurately interrogate the transcriptomes of the affected tissue. The recent development of next-generation sequencing-based RNA sequencing (RNA-seq) makes these types of studies possible. This chapter will focus on the RNA splicing factor forms of RP and the application of RNA-seq to study the pathogenesis of these diseases.


RNA-seq Next-generation sequencing Retinitis pigmentosa RNA splicing factors Prpf Transcriptome 



This work has been supported by the Ruth-Kirschstein National Research Service Award, Foundation Fighting Blindness, Penn Genome Frontiers Institute, Rosanne Silbermann Foundation, F.M. Kirby Foundation, and Research to Prevent Blindness.


  1. Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:195-203CrossRefGoogle Scholar
  2. Beggs JD, Teigelkamp S, Newman AJ (1995) The role of PRP8 protein in nuclear pre-mRNA splicing in yeast. J Cell Sci Suppl 19:101–105PubMedGoogle Scholar
  3. Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev 23:1379–1386PubMedCrossRefGoogle Scholar
  4. Buchholz DE, Hikita ST, Rowland TJ et al (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434PubMedCrossRefGoogle Scholar
  5. Bult CJ, Eppig JT, Kadin JA et al (2008) The Mouse Genome Database (MGD): Mouse biology and model systems. Nuc Acid Res 36:D724–D728CrossRefGoogle Scholar
  6. Bunker CH, Berson EL, Bromley WC et al (1984) Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 97:357–365PubMedGoogle Scholar
  7. Carr AJ, Vugler AA, Hikita ST et al (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4:e8152PubMedCrossRefGoogle Scholar
  8. Farkas MH, Bujakowska K, Krishan, A et al (2010) Characterization of aberrant splicing by next generation high-throughput RNA-seq in mice with targeted mutations in Prpf3, Prpf8, and Prpf31 Invest Ophthalmol Vis Sci 51:ARVO E-Abstract 3667Google Scholar
  9. Grainger RJ, Beggs JD (2005) Prp8 protein: At the heart of the spliceosome. RNA 11:533–557PubMedCrossRefGoogle Scholar
  10. Graziotto JJ, Farkas MH, Bujakowska KM et al (2011) Three gene targeted mouse models of RNA splicing factor RP show late onset RPE and retinal degeneration. Invest Ophthalmol Vis Sci 52(1):190–198Google Scholar
  11. Grondahl J (1987) Estimation of prognosis and prevalence of retinitis pigmentosa and Usher ­syndrome in Norway. Clin Genet 31:255–264PubMedGoogle Scholar
  12. Haim M, Holm NV, Rosenberg T (1992) Prevalence of retinitis pigmentosa and allied disorders in Denmark. I Main results. Acta Ophthalmol (Copenh) 70:178–186CrossRefGoogle Scholar
  13. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809PubMedCrossRefGoogle Scholar
  14. Kent WJ (2002) BLAT – the BLAST-like alignment tool. Genome Res 12:656–664PubMedGoogle Scholar
  15. Langmead B, Hansen K, Leek J (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11:R83PubMedCrossRefGoogle Scholar
  16. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCrossRefGoogle Scholar
  17. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11:473–483PubMedCrossRefGoogle Scholar
  18. Maita H, Kitaura H, Ariga H, Iguchi-Ariga SM (2005) Association of PAP-1 and Prp3p, the products of causative genes of dominant retinitis pigmentosa, in the tri-snRNP complex. Exp Cell Res 302:61–68PubMedCrossRefGoogle Scholar
  19. McKie AB, McHale JC, Keen TJ et al (2001) Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 10:1555–1562PubMedCrossRefGoogle Scholar
  20. McPherson JD (2009) Next-generation gap. Nat Meth 6:S2–S5CrossRefGoogle Scholar
  21. Ozsolak F, Goren A, Gymrek M et al (2010) Digital transcriptome profiling from attomole-level RNA samples. Genome Res 20:519–525PubMedCrossRefGoogle Scholar
  22. RetNet (2009) RetNet Web site address.
  23. Shendure J (2008) The beginning of the end for microarrays? Nat Meth 5:585–587CrossRefGoogle Scholar
  24. Simon SA, Zhai J, Nandety RS et al (2009) Short-read sequencing technologies for transcriptional analyses. Annu Rev Plant Biol 60:305–333PubMedCrossRefGoogle Scholar
  25. Teng X, Xiao H (2009) Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci C Life Sci 52:7–16CrossRefGoogle Scholar
  26. Vithana EN, Abu-Safieh L, Allen MJ et al (2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 8:375–381PubMedCrossRefGoogle Scholar
  27. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCrossRefGoogle Scholar
  28. Xu L, Hu L, Ma K, et al (2006) Prevalence of retinitis pigmentosa in urban and rural adult Chinese: The Beijing Eye Study. Eur J Ophthalmol 16:865–866PubMedGoogle Scholar
  29. Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801PubMedCrossRefGoogle Scholar
  30. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  31. Zhang Z, Lotti F, Dittmar K et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600PubMedCrossRefGoogle Scholar
  32. Zhao C, Bellur DL, Lu S et al (2009) Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 85:617–627PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael H. Farkas
    • 1
  • Greg R. Grant
    • 2
  • Eric A. Pierce
    • 1
    Email author
  1. 1.Ocular Genomics Institute, Berman Gund Laboratory, Department of OphthalmologyMassachusetts Eye and Ear InfirmaryBostonUSA
  2. 2.Penn Center for BioinformaticsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations