Rod Photoreceptor Temporal Properties in Retinal Degenerative Diseases

  • Yuquan WenEmail author
  • Kirsten G. Locke
  • Donald C. Hood
  • David G. Birch
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


Using paired-flash electroretinogram (ERG), our goal was to determine whether the inactivation of rod phototransduction is altered in patients with Retinal Degenerative Diseases (RDDs). The rod photoresponses were derived from 18 patients with autosomal dominant retinitis pigmentosa (adRP) (n = 18), 5 patients with cone–rod dystrophy (CRD), and 4 patients with Stargardt disease. Thirteen subjects with normal eye exams served as controls. T sat, the parameter describing phototransduction inactivation, was derived using the paired-flash ERG protocol. Rod a-wave recovery initiates at 544 ± 92 ms (mean ± SD) after a just-saturating test flash in subjects with normal vision. For patients with RDDs, the rod a-wave recovery initiates at 331 ± 99 ms (autosomal dominant RP, P < 0.001, t-test), 473 ± 113 ms (CRD, P = 0.26, t-test), and 491 ± 98 ms (Stargardt disease, P = 0.38, t-test). Thus patients with adRP show earlier-than-normal photoresponse recovery, while patients with CRD or Stargardt disease typically have T sat values within the normal range.


Retinitis pigmentosa Cone–rod dystrophy Stargardt disease Retinal degeneration Electroretinography Phototransduction Rhodopsin Peripherin/rds ABCA4 



We thank Dr. Dianna Hughbanks-Wheaton and Kaylie Clark at the Southwest Eye Registry and the Daiger lab at UT Houston for coordinating and performing genetic testing. This investigation was supported by US National Institutes of Health grant (NEI R01 09076) to D.G.B and D.C.H. and the Foundation Fighting Blindness.


  1. Allikmets R, Shroyer NF, Singh N et al (1997a) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807PubMedCrossRefGoogle Scholar
  2. Allikmets R, Singh N, Sun H et al (1997b) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246PubMedCrossRefGoogle Scholar
  3. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110:1571–1576PubMedCrossRefGoogle Scholar
  4. Birch DG, Hood DC, Nusinowitz S et al (1995) Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. Invest Ophthalmol Vis Sci 36:1603–1614PubMedGoogle Scholar
  5. Chen CK, Burns ME, He W et al (2000) Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403:557–560PubMedCrossRefGoogle Scholar
  6. Fishman GA (1976) Progressive human cone-rod dysfunction (dystrophy). Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:OP716–724Google Scholar
  7. Fishman GA (2010) Historical evolution in the understanding of Stargardt macular dystrophy. Ophthalmic Genet 31:183–189PubMedCrossRefGoogle Scholar
  8. Gal A, Li Y, Thompson DA et al (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:270–271PubMedCrossRefGoogle Scholar
  9. He W, Cowan CW, Wensel TG (1998) RGS9, a GTPase accelerator for phototransduction. Neuron 20:95–102PubMedCrossRefGoogle Scholar
  10. Jiang L, Wheaton D, Bereta G et al (2008) A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vision Res 48:2425–2432PubMedCrossRefGoogle Scholar
  11. Koenekoop RK (2009) Why do cone photoreceptors die in rod-specific forms of retinal degenerations? Ophthalmic Genet 30:152–154PubMedCrossRefGoogle Scholar
  12. Kraft TW, Allen D, Petters RM et al (2005) Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis 11:1246–1256PubMedGoogle Scholar
  13. Kraft TW, Sandoval IM, Boye SL et al (2006) Dramatically altered rod responses in rat retina overexpressing R9AP and RGS9-1. In: Society for Neuroscience Atlanta, GAGoogle Scholar
  14. Krispel CM, Chen D, Melling N et al (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51:409–416PubMedCrossRefGoogle Scholar
  15. Liebman PA, Jagger WS, Kaplan MW et al (1974) Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature 251:31–36PubMedCrossRefGoogle Scholar
  16. Marmor MF, Fulton AB, Holder GE et al (2009) ISCEV Standard for full-field clinical electroretino­graphy (2008 update). Doc Ophthalmol 118:69–77PubMedCrossRefGoogle Scholar
  17. Niculescu DM (2004) Physiological Characterization of the Light Response of Rod Photoreceptors in the Dystrophic Royal College of Surgeons Rat. In: Physiological Optics Birmingham, AL: University of Alabama at BirminghamGoogle Scholar
  18. Pepperberg DR, Birch DG, Hood DC (1997) Photoresponses of human rods in vivo derived from paired-flash electroretinograms. Vis Neurosci 14:73–82PubMedCrossRefGoogle Scholar
  19. Petters RM, Alexander CA, Wells KD et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965–970PubMedCrossRefGoogle Scholar
  20. Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52PubMedCrossRefGoogle Scholar
  21. Tsang SH, Woodruff ML, Janisch KM et al (2007) Removal of phosphorylation sites of gamma subunit of phosphodiesterase 6 alters rod light response. J Physiol 579:303–312PubMedCrossRefGoogle Scholar
  22. Wen Y (2008) Physiological Characterization of the Light Response of Rod Photoreceptors in the Light Damaged Rat. In: Neurobiology Birmingham, Alabama: University of Alabama at BirminghamGoogle Scholar
  23. Wen Y, Kraft TW (2008) Altered Light Response of Rod Photoreceptors Surviving Light Damage. In: ARVO 2008 Annual Meeting Fort Lauderdale, Florida, USAGoogle Scholar
  24. Wen Y, Niculescu DM, Kraft TW (2006) Desensitization of retinal photoreceptors during disease: not a story of equivalent light. In: Society for Neuroscience Atlanta, GAGoogle Scholar
  25. Wen Y, Locke KL, Hood DC, Birch DG (2011) Rod photoreceptor temporal properties in retinitis pigmentosa. Exp Eye Res 92(3):202–208Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yuquan Wen
    • 1
    Email author
  • Kirsten G. Locke
    • 1
  • Donald C. Hood
    • 2
  • David G. Birch
    • 1
    • 3
  1. 1.Rose-Silverthorne Retinal Degenerations LaboratoryRetina Foundation of the SouthwestDallasUSA
  2. 2.Department of Psychology and OphthalmologyColumbia UniversityNew YorkUSA
  3. 3.Department of OphthalmologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations