In Vivo Assessment of Rodent Retinal Structure Using Spectral Domain Optical Coherence Tomography

  • M. Dominik Fischer
  • Gesine Huber
  • Francois Paquet-Durand
  • Peter Humphries
  • T. Michael Redmond
  • Christian Grimm
  • Mathias W. Seeliger
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

To determine the potential of a commercially available optical coherence tomography (OCT) device (Spectralis™ HRA + OCT, Heidelberg Engineering) for small animal retinal imaging, we achieved to adapt this third generation OCT system to obtain and quantify high-resolution morphological sections of rodent retina in models with acquired and inherited retinal degenerations. Genetically induced (rd1, rho−/−, RPE65) and acquired retinal degeneration (light damage) was similarly clear as in histology and could be followed in a timeline fashion. We were able to detect and analyze a wide range of retinal pathology in a variety of established animal models used in vision research. As this technique allows longitudinal study designs, it will facilitate characterization of disease dynamics while reducing the numbers of study animals needed. Use of identical outcome measures and even the same diagnostic device in animal and clinical studies bears the potential to streamline translational approaches, e.g., in the assessment of putative therapeutic interventions.

Keywords

Optical coherence tomography Imaging Mouse models Retinal degeneration Light damage Rhodopsin RPE65 Rd1 

Notes

Acknowledgments

We thank Dr. C. Burchard for critical discussions and insightful comments. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, grants Se837/5-2, Se837/6-1, Se837/7-1, and PA1751/1–1), the German Ministry of Education and Research (BMBF grant 0314106), the European Union grants LSHG-CT-512036, EU HEALTH-F2-2008-200234, and EU MEST-CT-2005–020235, and a contribution of the Tistou and Charlotte Kerstan Foundation to the OCT equipment.

References

  1. Bowes C, Li T, Danciger M et al (1990) Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347:677–680PubMedCrossRefGoogle Scholar
  2. Buttery RG, Hinrichsen CF, Weller WL et al (1991) How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vision Res 31:169–187PubMedCrossRefGoogle Scholar
  3. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27:45–88PubMedCrossRefGoogle Scholar
  4. Fischer MD, Fleischhauer JC, Gillies MC et al (2008) A new method to monitor visual field defects caused by photoreceptor degeneration by quantitative optical coherence tomography. Invest Ophthalmol Vis Sci 49:3617–3621PubMedCrossRefGoogle Scholar
  5. Fischer MD, Huber G, Beck SC et al (2009) Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 4:e7507PubMedCrossRefGoogle Scholar
  6. Frasson M, Picaud S, Leveillard T et al (1999) Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40:2724–2734PubMedGoogle Scholar
  7. Hanstede JG, Gerrits PO (1983) The effects of embedding in water-soluble plastics on the final dimensions of liver sections. J Microsc 131:79–86PubMedCrossRefGoogle Scholar
  8. Huber G, Beck SC, Grimm C et al (2009) Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50:5888–5895PubMedCrossRefGoogle Scholar
  9. Humphries MM, Rancourt D, Farrar GJ et al (1997) Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 15:216–219PubMedCrossRefGoogle Scholar
  10. Joly S, Franke M, Ulbricht E et al (2009) Cooperative Phagocytes. Am J Pathol 174:2310–2323PubMedCrossRefGoogle Scholar
  11. Knott EJ, Sheets KG, Zhou Y et al (2011) Spatial correlation of mouse photoreceptor-RPE thickness between SD-OCT and histology. Exp Eye Res 92:155–160PubMedCrossRefGoogle Scholar
  12. Paquet-Durand F, Silva J, Talukdar T et al (2007) Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci 27:10311–10319PubMedCrossRefGoogle Scholar
  13. Redmond TM, Yu S, Lee E et al (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20:344–351PubMedCrossRefGoogle Scholar
  14. Samardzija M, Wenzel A, Aufenberg S et al (2006) Differential role of Jak-STAT signaling in retinal degenerations. Faseb J 20:2411–2413PubMedCrossRefGoogle Scholar
  15. Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S et al (2008) Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 38:253–269PubMedCrossRefGoogle Scholar
  16. Seeliger MW, Beck SC, Pereyra-Munoz N et al (2005) In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Res 45:3512–3519PubMedCrossRefGoogle Scholar
  17. Srinivasan VJ, Monson BK, Wojtkowski M et al (2008) Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 49:1571–1579PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Dominik Fischer
    • 1
  • Gesine Huber
    • 1
  • Francois Paquet-Durand
    • 2
  • Peter Humphries
    • 3
  • T. Michael Redmond
    • 4
  • Christian Grimm
    • 5
  • Mathias W. Seeliger
    • 1
  1. 1.Division of Ocular NeurodegenerationInstitute for Ophthalmic Research, Centre for OphthalmologyTuebingenGermany
  2. 2.Division for Experimental OphthalmologyInstitute for Ophthalmic Research, Centre for OphthalmologyTuebingenGermany
  3. 3.Department of Genetics, The Ocular Genetics UnitTrinity College DublinDublin 2Ireland
  4. 4.Laboratory of Retinal Cell and Molecular BiologyNational Eye Institute, National Institutes of HealthBethesdaUSA
  5. 5.Department of Ophthalmology, Laboratory of Retinal Cell BiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations