Advertisement

Correlation Between Spectral Domain OCT Retinal Nerve Fibre Layer Thickness and Multifocal Pattern Electroretinogram in Advanced Retinitis Pigmentosa

  • Ieva SliesoraityteEmail author
  • Eric Troeger
  • Antje Bernd
  • Anne Kurtenbach
  • Eberhart Zrenner
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Our aim is to assess the correlation between retinal nerve fibre layer thickness and ganglion cell function by electrophysiological means in advanced retinitis pigmentosa (RP) patients. A prospective observational case–control study enrolled 12 RP patients (age average 44 ± 14 years) with concentric visual field loss (≤10o) and 12 healthy age-matched control for testing. The peripapillary retinal nerve fibre layer (RNFL) thickness was assessed by spectral domain optical coherence tomography. The VERIS system was used to record multifocal pattern electroretinograms (mfPERG), a measure of inner retinal functional output. Amplitudes of P1N2 component were 42 ± 14, 53 ± 25 and 42 ± 17 nV within temporal superior, temporal, and temporal inferior region in RP, and 174 ± 52, 171 ± 46 and 144 ± 15 nV respectively in the control group (p < 0.01). RNFL thickness was 139 ± 46, 109 ± 34 and 153 ± 31 μm within temporal superior, temporal, and temporal inferior region in RP; and 131 ± 15, 79 ± 16 and 144 ± 15 μm respectively in the control group (p > 0.05). The diminution of photoreceptors sensory inputs in advanced RP patients corresponds with reduced amplitudes in mulitifocal pattern electroretinogram, although RNFL measurements indicate no detectable loss of RGC.

Keywords

Retinitis pigmentosa Multifocal pattern electroretinography Retinal nerve fibre layer Ganglion cell Retinal cell survival 

Notes

Acknowledgments

We thank Pro-Retina (Achen, Germany) for providing financial support to IS.

References

  1. Chen ZS, Yin ZQ, Chen S et al (2005) Electrophysiological changes of retinal ganglion cells in Royal College of Surgeons rats during retinal degeneration. Neuroreport 16:971–975PubMedCrossRefGoogle Scholar
  2. Cuenca N, Pinilla I, Sauvé Y et al (2004) Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 127:301–317PubMedCrossRefGoogle Scholar
  3. Güler AD, Ecker JL, Lall GS et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105PubMedCrossRefGoogle Scholar
  4. Humayun MS, Prince M, de Juan Jr. E et al (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148PubMedGoogle Scholar
  5. Jones BW, Watt CB, Marc RE (2005) Retinal remodelling. Clin Exp Optom 88:282–291PubMedCrossRefGoogle Scholar
  6. Langrová H, Jägle H, Zrenner E et al (2007) The multifocal pattern electroretinogram (mfPERG) and cone-isolating stimuli. Vis Neurosci 24:805–816PubMedCrossRefGoogle Scholar
  7. Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28:14282–14292PubMedCrossRefGoogle Scholar
  8. Rangaswamy NV, Patel HM, Locke KG et al (2010) A comparison of visual field sensitivity to photoreceptor thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci 51:4213–4219PubMedCrossRefGoogle Scholar
  9. Ruggiero L, Allen CN, Lane Brown R et al (2009) The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 29:359–367PubMedCrossRefGoogle Scholar
  10. Stiefelmeyer S, Neubauer AS, Berninger T (2003) The multifocal pattern electroretinogram in glaucoma. Vis Res 44:103–112CrossRefGoogle Scholar
  11. Strettoi E, Pignatelli V, Rossi C et al (2003) Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vis Res 43:867–877PubMedCrossRefGoogle Scholar
  12. Villegas-Pérez MP, Lawrence JM, Vidal-Sanz M et al (1998) Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J Comp Neurol 392:58–77PubMedCrossRefGoogle Scholar
  13. Walia S, Fishman GA (2008) Retinal nerve fiber layer analysis in RP patients using Fourier-domain OCT. Invest Ophthalmol Vis Sci 49:3525–3528PubMedCrossRefGoogle Scholar
  14. Zrenner E, Stett A, Weiss S et al (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vis Res 39: 2555–2567PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ieva Sliesoraityte
    • 1
    Email author
  • Eric Troeger
    • 1
  • Antje Bernd
    • 1
  • Anne Kurtenbach
    • 1
  • Eberhart Zrenner
    • 1
  1. 1.Centre for Ophthalmology, Institute for Ophthalmic ResearchUniversity of TuebingenTuebingenGermany

Personalised recommendations