Advertisement

Baseline Imaging Reveals Preexisting Retinal Abnormalities in Mice

  • Brent A. Bell
  • Charles Kaul
  • Mary E. Rayborn
  • Joe G. HollyfieldEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Confocal scanning laser ophthalmoscopy (SLO) and spectral-domain optical coherence tomography (OCT) are imaging modalities that have become increasingly popular among vision research groups worldwide. These devices are becoming easier to use and permit repeated in vivo imaging of intraocular tissues in small animal. We recently initiated baseline fundus imaging of all mice before their use in experimental studies. Here, we report that there are a substantial proportion of supposedly normal mice that have abnormal retinal morphology when evaluated with SLO and OCT. Our findings strongly indicate that mice should be prescreened with these imaging modalities before being used for experimental studies.

Keywords

Fundus Baseline Imaging Mice Retina Lesion Abnormalities Scanning laser Ophthalmoscope Optical coherence tomography 

Notes

Acknowledgments

The authors would like to thank the Foundation Fighting Blindness, Research to Prevent Blindness, Wolf Foundation, and NIH R01EY014240 for providing financial support. The authors also thank Dr. Nancy B. Bell for constructive input and assistance in the preparation of this chapter.

References

  1. Eter N, Engel DR, Meyer L et al (2008) In vivo visualization of dendritic cells, macrophages, and microglial cells responding to laser-induced damage in the fundus of the eye. Invest Ophthalmol Vis Sci 49:3649–3658PubMedCrossRefGoogle Scholar
  2. Fischer MD, Huber G, Beck SC et al (2009) Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 4:e7507PubMedCrossRefGoogle Scholar
  3. Gabriele ML, Ishikawa H, Schuman JS et al (2010) Reproducibility of Spectral-Domain Optical Coherence Tomography Total Retinal Thickness Measurements in Mice. Invest Ophthalmol Vis SciGoogle Scholar
  4. Hawes NL, Smith RS, Chang B et al (1999) Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22PubMedGoogle Scholar
  5. Hollyfield JG, Bonilha VL, Rayborn ME et al (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198PubMedCrossRefGoogle Scholar
  6. Huber G, Beck SC, Grimm C et al (2009) Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50:5888–5895PubMedCrossRefGoogle Scholar
  7. Kocaoglu OP, Uhlhorn SR, Hernandez E et al (2007) Simultaneous fundus imaging and optical coherence tomography of the mouse retina. Invest Ophthalmol Vis Sci 48:1283–1289PubMedCrossRefGoogle Scholar
  8. Luhmann UF, Robbie S, Munro PM et al (2009) The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 50:5934–5943PubMedCrossRefGoogle Scholar
  9. Paques M, Guyomard JL, Simonutti M et al (2007) Panretinal, high-resolution color photography of the mouse fundus. Invest Ophthalmol Vis Sci 48:2769–2774PubMedCrossRefGoogle Scholar
  10. Ruggeri M, Tsechpenakis G, Jiao S et al (2009) Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography. Opt Express 17:4074–4083PubMedCrossRefGoogle Scholar
  11. Xu H, Chen M, Manivannan A et al (2008) Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7:58–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Brent A. Bell
    • 1
  • Charles Kaul
    • 1
  • Mary E. Rayborn
    • 1
  • Joe G. Hollyfield
    • 1
    Email author
  1. 1.Department of OphthalmologyCole Eye Institute (i31), Cleveland Clinic Lerner College of MedicineClevelandUSA

Personalised recommendations