Imaging the Photoreceptor Mosaic with Adaptive Optics: Beyond Counting Cones

  • Pooja Godara
  • Melissa Wagner-Schuman
  • Jungtae Rha
  • Thomas B. ConnorJr.
  • Kimberly E. Stepien
  • Joseph CarrollEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


Recent years have seen an explosion in the development of novel ophthalmic imaging devices, delivering noninvasive views of the living retina. Adaptive optics (AO) imaging systems enable resolution of individual cells in the living retina. Analysis of these images has been limited to measures of cone density and regularity. Here, we introduce a small case series where the information in the high-resolution image extends beyond these standard metrics. These images should serve as the basis for evolving discussion as to how best to interpret AO retinal images.


Adaptive optics Cone degeneration Photoreceptor RPE Retinal imaging 



The authors thank B. Schroeder and P.M. Summerfelt for technical assistance. J. Carroll is the recipient of a Career Development Award from Research to Prevent Blindness. This study was supported by NIH grants P30EY001931 and R01EY017607, The Thomas M. Aaberg, Sr. Retina Research Fund, and an unrestricted grant from Research to Prevent Blindness. This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR-RR016511 from the National Center for Research Resources, NIH. Additional support comes from the Clinical and Translational Science Institute and the Biotechnology Innovation Center, NIH CTSA Grant UL1 RR 031973.


  1. Carroll J, Choi SS, Williams DR (2008) In vivo imaging of the photoreceptor mosaic of a rod monochromat. Vis Res 48:2564–2568PubMedCrossRefGoogle Scholar
  2. Chen YF, Roorda A, Duncan JL (2010) Advances in imaging of Stargardt disease. Adv Exp Med Biol 664:333–340PubMedCrossRefGoogle Scholar
  3. Choi SS, Doble N, Hardy JL et al (2006) In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. Invest Ophthalmol Vis Sci 47:2080–2092PubMedCrossRefGoogle Scholar
  4. Duncan JL, Zhang Y, Gandhi J et al (2007) High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest Ophthalmol Vis Sci 48:3283–3291PubMedCrossRefGoogle Scholar
  5. Godara P, Rha J, Tait DM et al (2010) Unusual adaptive optics findings in a patient with bilateral maculopathy. Arch Ophthalmol 128:253–254PubMedCrossRefGoogle Scholar
  6. Jain N, Farsiu S, Khanifar AA et al (2010) Quantitative comparison of drusen segmented on SD-OCT versus drusen delineated on color fundus photographs. Invest Ophthalmol Vis Sci 51:4875–4883PubMedCrossRefGoogle Scholar
  7. Jonnal RS, Besecker JR, Derby JC et al (2010) Imaging outer segment renewal in living human cone photoreceptors. Opt Express 18:5257–5270PubMedCrossRefGoogle Scholar
  8. Khanifar AA, Koreishi AF, Izatt JA et al (2008) Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 115:1883–1890PubMedCrossRefGoogle Scholar
  9. Li KY, Roorda A (2007) Automated identification of cone photoreceptors in adaptive optics retinal images. J Opt Soc Am A 24:1358–1363CrossRefGoogle Scholar
  10. McAllister JT, Dubis AM, Tait DM et al (2010) Arrested development: High-resolution imaging of foveal morphology in albinism. Vis Res 50:810–817PubMedCrossRefGoogle Scholar
  11. Putnam NM, Hofer HJ, Doble N et al (2005) The locus of fixation and the foveal cone mosaic. J Vis 5:632–639PubMedCrossRefGoogle Scholar
  12. Rha J, Schroeder B, Godara P et al (2009) Variable optical activation of human cone photoreceptors visualized using short coherence light source. Opt Lett 34:3782–3784PubMedCrossRefGoogle Scholar
  13. Roorda A, Williams DR (2002) Optical fiber properties of individual human cones. J Vis 2:404–412PubMedCrossRefGoogle Scholar
  14. Roorda A, Zhang Y, Duncan JL (2007) High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 48:2297–2303PubMedCrossRefGoogle Scholar
  15. Rossi EA, Roorda A (2010) The relationship between visual resolution and cone spacing in the human fovea. Nat Neurosci 13:156–157PubMedCrossRefGoogle Scholar
  16. Tanna H, Dubis AM, Ayub N et al (2010) Retinal imaging using commercial broadband optical coherence tomography. Br J Ophthalmol 94:372–376PubMedCrossRefGoogle Scholar
  17. Wolfing JI, Chung M, Carroll J et al (2006) High-resolution retinal imaging of cone-rod dystrophy. Ophthalmology 113:1014–1019CrossRefGoogle Scholar
  18. Xue B, Choi SS, Doble N et al (2007) Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. J Opt Soc Am A 24:1364–1372CrossRefGoogle Scholar
  19. Yoon MK, Roorda A, Zhang Y et al (2009) Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation. Invest Ophthalmol Vis Sci 50:1838–1847PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pooja Godara
    • 1
  • Melissa Wagner-Schuman
    • 1
    • 2
  • Jungtae Rha
    • 1
  • Thomas B. ConnorJr.
    • 1
  • Kimberly E. Stepien
    • 1
  • Joseph Carroll
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of OphthalmologyMedical College of WisconsinMilwaukeeUSA
  2. 2.Departments of Ophthalmology and BiophysicsMedical College of WisconsinMilwaukeeUSA
  3. 3.Departments of Ophthalmology and Biophysics, and Cell Biology, Neurobiology, and AnatomyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations