Advertisement

The Genetics of Outer Segment Morphogenesis in Zebrafish

  • Alison L. ReynoldsEmail author
  • Oliver E. Blacque
  • Breandán N. KennedyEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Appropriate outer segment (OS) morphogenesis is necessary for normal visual function. Thirty-three zebrafish mutants with OS morphogenesis defects have been reported. We describe here the phenotypes and potential mechanisms by which these mutant loci cause OS dysmorphogenesis.

Keywords

Zebrafish Photoreceptor Outer segment Mutants Blindness Intraflagellar transport Phototransduction 

References

  1. Adams N, Awadein A, Toma H (2007) The retinal ciliopathies. Ophthalmic Genet 28:113–25PubMedCrossRefGoogle Scholar
  2. Amsterdam A, Hopkins N (2004) Retroviral-mediated insertional mutagenesis in zebrafish. Methods Cell Biol 77:3–20PubMedCrossRefGoogle Scholar
  3. Amsterdam A, Nissen R, Sun Z et al (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–12797PubMedCrossRefGoogle Scholar
  4. Bahadori R, Rinner O, Schonthaler HB et al (2006) The Zebrafish fade out Mutant: A Novel Genetic Model for Hermansky-Pudlak Syndrome. Invest Ophthalmol Vis Sci 47:4523–4531PubMedCrossRefGoogle Scholar
  5. Becker TS, Burgess SM, Amsterdam AH et al (1998) not really finished is crucial for development of the zebrafish outer retina and encodes a transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. Development 125:4369–4378PubMedGoogle Scholar
  6. Biehlmaier O, Makhankov Y, Neuhauss SCF (2007) Impaired retinal differentiation and maintenance in zebrafish laminin mutants. Invest Ophthalmol Vis Sci 48:2887–2894PubMedCrossRefGoogle Scholar
  7. Bilotta J, Saszik S, Sutherland SE (2001) Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev Dyn 222:564–570PubMedCrossRefGoogle Scholar
  8. Blacque O, Cevik S, Kaplan O (2008) Intraflagellar transport: from molecular characterisation to mechanism. Front Biosci 13:2633–52PubMedCrossRefGoogle Scholar
  9. den Hollander AI, Roepman R, Koenekoop RK et al (2008) Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog Retin Eye Res 27:391–419CrossRefGoogle Scholar
  10. Doerre G, Malicki J (2001) A mutation of early photoreceptor development, mikre oko, reveals cell-cell interactions involved in the survival and differentiation of zebrafish photoreceptors. J Neurosci 21:6745–6757PubMedGoogle Scholar
  11. Doerre G, Malicki J (2002) Genetic analysis of photoreceptor cell development in the zebrafish retina. Mech Dev 110:125–138PubMedCrossRefGoogle Scholar
  12. Follit JA, Xu F, Keady BT et al (2009) Characterization of mouse IFT complex B. Cell Motil Cytoskeleton 66: 457–468PubMedCrossRefGoogle Scholar
  13. Furukawa T, Morrow EM, Li T et al (1999) Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 23:466–470PubMedCrossRefGoogle Scholar
  14. Gross JM, Perkins BD, Amsterdam A et al (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170:245–261PubMedCrossRefGoogle Scholar
  15. Insinna C, Baye L, Amsterdam A et al (2010) Analysis of a zebrafish dync1h1 mutant reveals multiple functions for cytoplasmic dynein 1 during retinal photoreceptor development. Neural Dev 5:12PubMedCrossRefGoogle Scholar
  16. Insinna C, Humby M, Sedmak T et al (2009) Different roles for KIF17 and kinesin II in photoreceptor development and maintenance. Dev Dyn 238:2211–2222PubMedCrossRefGoogle Scholar
  17. Insinna C, Pathak N, Perkins B et al (2008) The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev Biol 316:160–170PubMedCrossRefGoogle Scholar
  18. Jing X, Malicki J (2009) Zebrafish ale oko, an essential determinant of sensory neuron survival and the polarity of retinal radial glia, encodes the p50 subunit of dynactin. Development 136:2955–2964PubMedCrossRefGoogle Scholar
  19. Johnson SL, Africa D, Horne S et al (1995) Half-Tetrad Analysis in Zebrafish: Mapping the ros mutation and the centromere of linkage group I. Genetics 139:1727–1735PubMedGoogle Scholar
  20. Karan S, Frederick J, Baehr W (2010) Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Mol Cell Biochem 334:141–55PubMedCrossRefGoogle Scholar
  21. Karan S, Zhang H, Li S et al. (2008) A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vision Res 48:442–452PubMedCrossRefGoogle Scholar
  22. Krock B, Mills-Henry I, Perkins B (2009) Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Invest Ophthalmol Vis Sci 50:5463–5471PubMedCrossRefGoogle Scholar
  23. Krock BL, Perkins BD (2008) The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 121:1907–1915PubMedCrossRefGoogle Scholar
  24. Libby RT, Champliaud M-F, Claudepierre T et al (2000) Laminin expression in adult and developing retinae: evidence of two novel CNS laminins. J Neurosci 20:6517–6528PubMedGoogle Scholar
  25. Maaswinkel H, Mason B, Li L (2003) ENU-induced late-onset night blindness associated with rod photoreceptor cell degeneration in zebrafish. Mech Ageing Dev 124:1065–1071PubMedCrossRefGoogle Scholar
  26. Maaswinkel H, Riesbeck LE, Riley ME et al (2005) Behavioral screening for nightblindness mutants in zebrafish reveals three new loci that cause dominant photoreceptor cell degeneration. Mech Ageing Dev 126:1079–1089PubMedCrossRefGoogle Scholar
  27. Mears AJ, Kondo M, Swain PK et al (2001) Nrl is required for rod photoreceptor development. Nat Genet 29:447–452PubMedCrossRefGoogle Scholar
  28. Mohideen MAP, Beckwith LG, Tsao-Wu GS et al (2003) Histology-based screen for zebrafish mutants with abnormal cell differentiation. Dev Dyn 228:414–423PubMedCrossRefGoogle Scholar
  29. Muto A, Orger MB, Wehman AM et al (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66PubMedCrossRefGoogle Scholar
  30. Neuhauss SCF, Biehlmaier O, Seeliger MW et al (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19:8603–8615PubMedGoogle Scholar
  31. Nishiwaki Y, Komori A, Sagara H et al (2008) Mutation of cGMP phosphodiesterase 6[alpha]′-subunit gene causes progressive degeneration of cone photoreceptors in zebrafish. Mech Dev 125:932–946PubMedCrossRefGoogle Scholar
  32. Nuckels RJ, Ng A, Darland T et al (2009) The vacuolar-ATPase complex regulates retinoblast proliferation and survival, photoreceptor morphogenesis, and pigmentation in the zebrafish eye. Invest Ophthalmol Vis Sci 50:893–905PubMedCrossRefGoogle Scholar
  33. Omori Y, Zhao C, Saras A et al (2008) elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 10:437–444PubMedCrossRefGoogle Scholar
  34. Schmitt E, Dowling J (1999) Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404:515–36PubMedCrossRefGoogle Scholar
  35. Schonthaler HB, Fleisch VC, Biehlmaier O et al (2008) The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development 135:387–399PubMedCrossRefGoogle Scholar
  36. Solnica-Krezel L, Schier A, Driever W (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136:1–20Google Scholar
  37. Stearns G, Evangelista M, Fadool JM et al (2007) A mutation in the cone-specific PDE6 gene causes rapid cone photoreceptor degeneration in zebrafish. J Neurosci 27:13866–13874PubMedCrossRefGoogle Scholar
  38. Sukumaran S, Perkins BD (2009) Early defects in photoreceptor outer segment morphogenesis in zebrafish ift57, ift88 and ift172 intraflagellar Transport mutants. Vision Res 49:479–489PubMedCrossRefGoogle Scholar
  39. Tsujikawa M, Malicki J (2004a) Genetics of photoreceptor development and function in zebrafish. Int J Dev Biol 48:925–34PubMedCrossRefGoogle Scholar
  40. Tsujikawa M, Malicki J (2004b) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42:703–716PubMedCrossRefGoogle Scholar
  41. Wehman AM, Staub W, Meyers JR et al (2005) Genetic dissection of the zebrafish retinal stem-cell compartment. Dev Biol 281:53–65PubMedCrossRefGoogle Scholar
  42. Withrow C, Ashraf S, O’Leary T et al (2002) Effect of polyamine depletion on cone photoreceptors of the developing rabbit retina. Invest Ophthalmol Vis Sci 43:3081–3090PubMedGoogle Scholar
  43. Zhang H, Li S, Doan T et al (2007) Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc Natl Acad Sci USA 104:8857–62PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.UCD School of Biomedical and Biomolecular Sciences, UCD Conway InstituteUniversity College DublinDublin 4Ireland

Personalised recommendations