Advertisement

Looking into Eyes: Rhodopsin Pathologies in Drosophila

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

The detailed examination of eye structure and function in numerous Drosophila mutants has provided unprecedented insights into retinal physiology and pathology. Many Drosophila mutants that undergo retinal degeneration (RD) exhibit structural and/or dynamic alterations of the photon receptor rhodopsin, and similar defects cause retinitis pigmentosa (RP) in humans. Here, we consider how the use of Drosophila has advanced our understanding of RP and highlight new mechanisms underlying rhodopsin-mediated pathologies in the retina.

Keywords

Retinitis pigmentosa Retinal degeneration Rhodopsin Drosophila Photoreceptor Retina Phototransduction Autophagy ER stress 

Notes

Acknowledgments

Work in the Ueffing laboratory is supported by the EU Grant NEUROTRAIN (MEST-CT-2005-020235), RETNET (MRTN-CT-2003-504003) and EVI-GENORET (LSHG-CT-2005-512036 to MU).

References

  1. Acharya JK, Dasgupta U, Rawat SS et al (2008) Cell-nonautonomous function of ceramidase in photoreceptor homeostasis. Neuron 57:69–79PubMedCrossRefGoogle Scholar
  2. Ahmad ST, Joyce MV, Boggess B et al (2006) The role of Drosophila ninaG oxidoreductase in visual pigment chromophore biogenesis. J Biol Chem 281:9205–9209PubMedCrossRefGoogle Scholar
  3. Alloway PG, Dolph PJ (1999) A role for the light-dependent phosphorylation of visual arrestin. Proc Natl Acad Sci USA 96:6072–6077PubMedCrossRefGoogle Scholar
  4. Alloway PG, Howard L, Dolph PJ (2000) The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 28:129–138PubMedCrossRefGoogle Scholar
  5. Chang HY, Ready DF (2000) Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 290:1978–1980PubMedCrossRefGoogle Scholar
  6. Chinchore Y, Mitra A, Dolph PJ (2009) Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration. PLoS Genet 5:e1000377PubMedCrossRefGoogle Scholar
  7. Colley NJ, Baker EK, Stamnes MA et al (1991) The cyclophilin homolog ninaA is required in the secretory pathway. Cell 67:255–263PubMedCrossRefGoogle Scholar
  8. Colley NJ, Cassill JA, Baker EK et al (1995) Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci USA 92:3070–3074PubMedCrossRefGoogle Scholar
  9. Cook T, Desplan C (2001) Photoreceptor subtype specification: from flies to humans. Semin Cell Dev Biol 12:509–518PubMedCrossRefGoogle Scholar
  10. Daiger SP (2004) Identifying retinal disease genes: how far have we come, how far do we have to go? Novartis Found Symp 255:17–27; discussion 27–36, 177–178PubMedCrossRefGoogle Scholar
  11. Daiger SP, Bowne SJ, Sullivan LS (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 125:151–158PubMedCrossRefGoogle Scholar
  12. Davidson FF, Steller H (1998) Blocking apoptosis prevents blindness in Drosophila retinal degeneration mutants. Nature 391:587–591PubMedCrossRefGoogle Scholar
  13. Dolph PJ, Ranganathan R, Colley NJ et al (1993) Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 260:1910–1916PubMedCrossRefGoogle Scholar
  14. Dryja TP, McGee TL, Reichel E et al (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366PubMedCrossRefGoogle Scholar
  15. Galy A, Roux MJ, Sahel JA et al (2005) Rhodopsin maturation defects induce photoreceptor death by apoptosis: a fly model for RhodopsinPro23His human retinitis pigmentosa. Hum Mol Genet 14:2547–2557PubMedCrossRefGoogle Scholar
  16. Griciuc A, Aron L, Piccoli G et al (2010a) Clearance of Rhodopsin(P23H) aggregates requires the ERAD effector VCP. Biochim Biophys Acta 1803:424–434PubMedCrossRefGoogle Scholar
  17. Griciuc A, Aron L, Roux MJ et al (2010b) Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 6Google Scholar
  18. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40PubMedCrossRefGoogle Scholar
  19. Han J, Reddig K, Li HS (2007) Prolonged G(q) activity triggers fly rhodopsin endocytosis and degradation, and reduces photoreceptor sensitivity. EMBO J 26:4966–4973PubMedCrossRefGoogle Scholar
  20. Han J, Gong P, Reddig K et al (2006) The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-coupled light receptor. Cell 127:847–858PubMedCrossRefGoogle Scholar
  21. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809PubMedCrossRefGoogle Scholar
  22. Hsu CD, Whaley MA, Frazer K et al (2004) Limited role of developmental programmed cell death pathways in Drosophila norpA retinal degeneration. J Neurosci 24:500–507PubMedCrossRefGoogle Scholar
  23. Iakhine R, Chorna-Ornan I, Zars T et al (2004) Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization. J Neurosci 24:2516–2526PubMedCrossRefGoogle Scholar
  24. Kang MJ, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci USA 106:17043–17048PubMedCrossRefGoogle Scholar
  25. Kennan A, Aherne A, Humphries P (2005) Light in retinitis pigmentosa. Trends Genet 21:103–110PubMedCrossRefGoogle Scholar
  26. Kiselev A, Socolich M, Vinos J et al (2000) A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron 28:139–152PubMedCrossRefGoogle Scholar
  27. Knust E (2007) Photoreceptor morphogenesis and retinal degeneration: lessons from Drosophila. Curr Opin Neurobiol 17:541–547PubMedCrossRefGoogle Scholar
  28. Kock I, Bulgakova NA, Knust E et al (2009) Targeting of Drosophila rhodopsin requires helix 8 but not the distal C-terminus. PLoS One 4:e6101PubMedCrossRefGoogle Scholar
  29. Kurada P, O’Tousa JE (1995) Retinal degeneration caused by dominant rhodopsin mutations in Drosophila. Neuron 14:571–579PubMedCrossRefGoogle Scholar
  30. Kurada P, Tonini TD, Serikaku MA et al (1998) Rhodopsin maturation antagonized by dominant rhodopsin mutants. Vis Neurosci 15:693–700PubMedCrossRefGoogle Scholar
  31. Leonard DS, Bowman VD, Ready DF et al (1992) Degeneration of photoreceptors in rhodopsin mutants of Drosophila. J Neurobiol 23:605–626PubMedCrossRefGoogle Scholar
  32. Lin JH, Li H, Yasumura D et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949PubMedCrossRefGoogle Scholar
  33. Mendes CS, Levet C, Chatelain G et al (2009) ER stress protects from retinal degeneration. EMBO J 28:1296–1307PubMedCrossRefGoogle Scholar
  34. Mendes HF, Cheetham ME (2008) Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Hum Mol Genet 17:3043–3054PubMedCrossRefGoogle Scholar
  35. Mendes HF, van der Spuy J, Chapple JP et al (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185PubMedCrossRefGoogle Scholar
  36. Midorikawa R, Yamamoto-Hino M, Awano W et al (2010) Autophagy-dependent rhodopsin degradation prevents retinal degeneration in Drosophila. J Neurosci 30:10703–10719PubMedCrossRefGoogle Scholar
  37. Ni L, Guo P, Reddig K et al (2008) Mutation of a TADR protein leads to rhodopsin and Gq-dependent retinal degeneration in Drosophila. J Neurosci 28:13478–13487PubMedCrossRefGoogle Scholar
  38. O’Tousa JE, Leonard DS, Pak WL (1989) Morphological defects in oraJK84 photoreceptors caused by mutation in R1-6 opsin gene of Drosophila. J Neurogenet 6:41–52PubMedCrossRefGoogle Scholar
  39. O’Tousa JE, Baehr W, Martin RL et al (1985) The Drosophila ninaE gene encodes an opsin. Cell 40:839–850PubMedCrossRefGoogle Scholar
  40. Orem NR, Xia L, Dolph PJ (2006) An essential role for endocytosis of rhodopsin through interaction of visual arrestin with the AP-2 adaptor. J Cell Sci 119:3141–3148PubMedCrossRefGoogle Scholar
  41. Raghu P, Usher K, Jonas S et al (2000) Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron 26:169–179PubMedCrossRefGoogle Scholar
  42. Rivas MA, Vecino E (2009) Animal models and different therapies for treatment of retinitis pigmentosa. Histol Histopathol 24:1295–1322PubMedGoogle Scholar
  43. Rosenbaum EE, Hardie RC, Colley NJ (2006) Calnexin is essential for rhodopsin maturation, Ca2+ regulation, and photoreceptor cell survival. Neuron 49:229–241PubMedCrossRefGoogle Scholar
  44. Ryoo HD, Domingos PM, Kang MJ et al (2007) Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J 26:242–252PubMedCrossRefGoogle Scholar
  45. Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S et al (2008) Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 38:253–269PubMedCrossRefGoogle Scholar
  46. Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66:15–36PubMedCrossRefGoogle Scholar
  47. Satoh A, Tokunaga F, Kawamura S et al (1997) In situ inhibition of vesicle transport and protein processing in the dominant negative Rab1 mutant of Drosophila. J Cell Sci 110 ( Pt 23):2943–2953PubMedGoogle Scholar
  48. Satoh AK, O’Tousa JE, Ozaki K et al (2005) Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132:1487–1497PubMedCrossRefGoogle Scholar
  49. Shetty KM, Kurada P, O’Tousa JE (1998) Rab6 regulation of rhodopsin transport in Drosophila. J Biol Chem 273:20425–20430PubMedCrossRefGoogle Scholar
  50. Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80:384–401PubMedCrossRefGoogle Scholar
  51. Stamnes MA, Shieh BH, Chuman L et al (1991) The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell 65:219–227PubMedCrossRefGoogle Scholar
  52. Steller H (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15:1132–1138PubMedCrossRefGoogle Scholar
  53. Wang T, Montell C (2007) Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 454:821–847PubMedCrossRefGoogle Scholar
  54. Wang T, Jiao Y, Montell C (2005) Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. J Cell Biol 171:685–694PubMedCrossRefGoogle Scholar
  55. Wang T, Lao U, Edgar BA (2009) TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol 186:703–711PubMedCrossRefGoogle Scholar
  56. Yoon J, Ben-Ami HC, Hong YS et al (2000) Novel mechanism of massive photoreceptor degeneration caused by mutations in the trp gene of Drosophila. J Neurosci 20:649–659PubMedGoogle Scholar
  57. Zuker CS, Cowman AF, Rubin GM (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40:851–858PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Protein ScienceHelmholtz Zentrum Muenchen-German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Institute for Ophthalmic Research, Center for OphtalmologyUniversity of TuebingenTuebingenGermany
  3. 3.Department of PathologyHarvard Medical SchoolBostonUSA

Personalised recommendations