Skip to main content

Zebrafish: A Model System for the Investigation of Novel Treatments for Retinal Disease

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Over the latter part of the twentieth century the zebrafish, Danio rerio, has emerged as a preeminent model system for studying developmental biology, physiology, toxicology, and disease. The key driver has been the genetic tractability of the zebrafish, enabling numerous mutant strains to become available for analysis. The large eyes and the optical transparency of zebrafish embryo make it especially suited for investigating diseases of the retina. Moreover, visual development is rapid and closely resembles that of human retina including an elaborate color visual system. With the ability to carry out high-throughput screens in vivo, this vertebrate model will likely emerge as a leader for the identification of novel drugs for the treatment of retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amsterdam A, Nissen RM, Sun Z et al (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–12797

    Article  PubMed  CAS  Google Scholar 

  • Asakawa K, Suster ML, Mizusawa K et al (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105:1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff SE, Hurley JB, Janssen-Bienhold U et al (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92:10545–10549

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff SE, Dowling JE, Hurley JB (1998) Zebrafish retinal mutants. Vision Res 38:1335–1339

    Article  PubMed  CAS  Google Scholar 

  • Broughton RE, Milam JE, Roe BA (2001) The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res 11:1958–1967

    PubMed  CAS  Google Scholar 

  • Davison JM, Akitake CM, Goll MG et al (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304:811–824

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    PubMed  CAS  Google Scholar 

  • Easter SS, Nicola GN (1996) The development of vision in the zebrafish (Danio rerio). Dev Biol 180:646–663

    Article  PubMed  CAS  Google Scholar 

  • Fadool JM, Brockerhoff SE, Hyatt GA et al (1997) Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev Genet 20:288–295

    Article  PubMed  CAS  Google Scholar 

  • Gross JM, Perkins BD, Amsterdam A et al (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170:245–261

    Article  PubMed  CAS  Google Scholar 

  • Grunwald DJ, Streisinger G (1992) Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 59:103–116

    Article  PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  • Kitambi SS, McCulloch KJ, Peterson RT et al (2009) Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 126:464–477

    Article  PubMed  CAS  Google Scholar 

  • Maddison LA, Lu J, Victoroff T et al (2009) A gain-of-function screen in zebrafish identifies a guanylate cyclase with a role in neuronal degeneration. Mol Genet Genomics 281:551–563

    Article  PubMed  CAS  Google Scholar 

  • Malicki J, Neuhauss SC, Schier AF et al (1996) Mutations affecting development of the zebrafish retina. Development 123:263–273

    PubMed  CAS  Google Scholar 

  • Maurer CM, Schönthaler HB, Mueller KP et al (2010) Distinct Retinal Deficits in a Zebrafish Pyruvate Dehydrogenase-Deficient Mutant. J Neurosci 30:11962–11972

    Article  PubMed  CAS  Google Scholar 

  • Moosajee M, Gregory-Evans K, Ellis CD et al (2008) Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet 17:3987–4000

    Article  PubMed  CAS  Google Scholar 

  • Muto A, Orger MB, Wehman AM et al (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66

    Article  PubMed  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216 –220

    Article  PubMed  CAS  Google Scholar 

  • Neuhauss SC, Biehlmaier O, Seeliger MW et al (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19:8603–8615

    PubMed  CAS  Google Scholar 

  • Peterson RT, Shaw SY, Peterson TA, et al (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22:595–599

    Article  PubMed  CAS  Google Scholar 

  • Robinson J, Schmitt EA, Hárosi FI et al (1993) Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proc Natl Acad Sci USA 90:6009–6012

    Article  PubMed  CAS  Google Scholar 

  • Schmitt EA, Dowling JE (1994) Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 344:532–542

    Article  PubMed  CAS  Google Scholar 

  • Schmitt EA, Dowling JE (1999) Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404:515–536

    Article  PubMed  CAS  Google Scholar 

  • Sprague J, Bayraktaroglu L, Clements D et al (2006) The Zebrafish Information Network: the zebrafish model organism database. Nucl Acids Res 34: Database issue D581–D585

    Google Scholar 

  • Streisinger G, Singer F, Walker C et al (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112:311–319

    PubMed  CAS  Google Scholar 

  • Wagner A (1998) The fate of duplicated genes: loss or new function? Bioessays 20:785–788

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl Y. Gregory-Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gregory-Evans, C.Y. (2012). Zebrafish: A Model System for the Investigation of Novel Treatments for Retinal Disease. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_51

Download citation

Publish with us

Policies and ethics