Advertisement

Polymorphic Variation of RPGRIP1L and IQCB1 as Modifiers of X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR

  • Abigail T. Fahim
  • Sara J. Bowne
  • Lori S. Sullivan
  • Kaylie D. Webb
  • Jessica T. Williams
  • Dianna K. Wheaton
  • David G. Birch
  • Stephen P. DaigerEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

Mutations in retinitis pigmentosa GTPase regulator (RPGR) account for over 70% of X-linked retinitis pigmentosa (XlRP), characterized by retinal degeneration and eventual blindness. RPGR mutations demonstrate extreme phenotypic heterogeneity, even within the same family, suggesting a role for genetic modifiers in disease expression. This study aimed to categorize the clinical diversity in a cohort of 98 affected males from 56 families with RPGR mutations, and to test candidate modifier genes for association with disease severity. Ninety-eight affected males from 56 families were enrolled. Patients were categorized as mild, moderate, or severe according to specific clinical criteria. Patient DNA was genotyped for common coding SNPs in four candidate modifier genes known to interact with RPGR: RPGRIP1, RPGRIP1L, CEP290, and NPHP5. Family-based association testing was performed using PLINK (pngu.mgh.harvard.edu/purcell/plink/). A wide range of severity was observed between and within families. Two SNPs showed association with severe disease: the minor allele (N) of I393N in IQCB1 (p = 0.044) and the common allele (R) of R744Q in RPGRIP1L (p = 0.049).

Keywords

Retinitis pigmentosa Retinal degeneration RPGR Genetic modifier Ciliopathy 

Notes

Acknowledgments

We thank James Hixson for the monsomic cell line DNA, Hemaxi Patel for assistance in visual function testing, and Martin Klein for assistance in creating Fig. 41.1. This work was funded by the Foundation Fighting Blindness and NEI/NIH grant EY007142 to SPD.

References

  1. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249PubMedCrossRefGoogle Scholar
  2. Arts HH, Doherty D, van Beersum SE et al (2007) Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet 39:882–888PubMedCrossRefGoogle Scholar
  3. Ayyagari R, Demirci FY, Liu J et al (2002) X-linked recessive atrophic macular degeneration from RPGR mutation. Genomics 80:166–171PubMedCrossRefGoogle Scholar
  4. Baala L, Audollent S, Martinovic J et al (2007) Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet 81:170–179PubMedCrossRefGoogle Scholar
  5. Berson EL (2007) Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture. Exp Eye Res 85:7–14PubMedCrossRefGoogle Scholar
  6. Berson EL, Sandberg MA, Rosner B et al (1985) Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 99:240–251PubMedGoogle Scholar
  7. Birch DG, Anderson JL, Fish GE (1999) Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy. Ophthalmology 106:258–268PubMedCrossRefGoogle Scholar
  8. Boylan JP, Wright AF (2000) Identification of a novel protein interacting with RPGR. Hum Mol Genet 9:2085–2093PubMedCrossRefGoogle Scholar
  9. Chen TY, Illing M, Molday LL et al (1994) Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca(2+)-calmodulin modulation. Proc Natl Acad Sci USA 91:11757–11761PubMedCrossRefGoogle Scholar
  10. Delous M, Baala L, Salomon R et al (2007) The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet 39:875–881PubMedCrossRefGoogle Scholar
  11. Demirci FY, Rigatti BW, Wen G et al (2002) X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet 70:1049–1053PubMedCrossRefGoogle Scholar
  12. den Hollander AI, Koenekoop RK, Yzer S et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79:556–561CrossRefGoogle Scholar
  13. Dryja TP, Adams SM, Grimsby JL et al (2001) Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 68:1295–1298PubMedCrossRefGoogle Scholar
  14. Grover S, Fishman GA, Anderson RJ et al (2000) A longitudinal study of visual function in carriers of X-linked recessive retinitis pigmentosa. Ophthalmology 107:386-396PubMedCrossRefGoogle Scholar
  15. Guo DC, Milewicz DM (2003) Methodology for using a universal primer to label amplified DNA segments for molecular analysis. Biotechnol Lett 25:2079–2083PubMedCrossRefGoogle Scholar
  16. Hong DH, Pawlyk B, Sokolov M et al (2003) RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 44:2413–2421PubMedCrossRefGoogle Scholar
  17. Keith CG, Denton MJ, Chen JD (1991) Clinical variability in a family with X-linked retinal dystrophy and the locus at the RP3 site. Ophthalmic Paediatr Genet 12:91–98PubMedCrossRefGoogle Scholar
  18. Khanna H, Hurd TW, Lillo C et al (2005) RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J Biol Chem 280:33580–33587PubMedCrossRefGoogle Scholar
  19. Khanna H, Davis EE, Murga-Zamalloa CA et al (2009) A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet 41:739–745PubMedCrossRefGoogle Scholar
  20. Louie CM, Caridi G, Lopes VS et al (2010) AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 42:175–180PubMedCrossRefGoogle Scholar
  21. Murga-Zamalloa CA, Atkins SJ, Peranen J et al (2010) Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: implications for cilia dysfunction and photoreceptor degeneration. Hum Mol Genet 19:3591–3598PubMedCrossRefGoogle Scholar
  22. Otto EA, Loeys B, Khanna H et al (2005) Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37:282-288PubMedCrossRefGoogle Scholar
  23. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRefGoogle Scholar
  24. Roepman R, Bernoud-Hubac N, Schick DE et al (2000) The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum Mol Genet 9:2095–2105PubMedCrossRefGoogle Scholar
  25. Sayer JA, Otto EA, O’Toole JF et al (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38:674–681PubMedCrossRefGoogle Scholar
  26. Souied E, Segues B, Ghazi I et al (1997) Severe manifestations in carrier females in X linked retinitis pigmentosa. J Med Genet 34:793–797PubMedCrossRefGoogle Scholar
  27. Tory K, Lacoste T, Burglen L et al (2007) High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol 18:1566–1575PubMedCrossRefGoogle Scholar
  28. Walia S, Fishman GA, Swaroop A et al (2008) Discordant phenotypes in fraternal twins having an identical mutation in exon ORF15 of the RPGR gene. Arch Ophthalmol 126:379–384PubMedCrossRefGoogle Scholar
  29. Yang Z, Peachey NS, Moshfeghi DM et al (2002) Mutations in the RPGR gene cause X-linked cone dystrophy. Hum Mol Genet 11:605–611PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Abigail T. Fahim
    • 1
  • Sara J. Bowne
    • 1
  • Lori S. Sullivan
    • 1
  • Kaylie D. Webb
    • 2
  • Jessica T. Williams
    • 1
  • Dianna K. Wheaton
    • 2
    • 3
  • David G. Birch
    • 2
    • 3
  • Stephen P. Daiger
    • 1
    Email author
  1. 1.Human Genetics Center, School of Public HealthUniversity of Texas Health Science Center at HoustonHoustonUSA
  2. 2.Retina Foundation of the SouthwestDallasUSA
  3. 3.Department of OphthalmologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations